智能机器人 |
|
|
|
|
多尺度补偿传递熵的皮层肌肉功能耦合方法 |
金国美1( ),佘青山1,*( ),张敏1,马玉良1,张建海2,孙明旭3 |
1. 杭州电子科技大学 自动化学院,浙江 杭州 310018 2. 浙江省脑机协同智能重点实验室,浙江 杭州 310018 3. 济南大学 自动化与电气工程学院,山东 济南 250022 |
|
Functional cortical muscle coupling method of multi-scale compensated transfer entropy |
Guo-mei JIN1( ),Qing-shan SHE1,*( ),Min ZHANG1,Yu-liang MA1,Jian-hai ZHANG2,Ming-xu SUN3 |
1. School of automation, Hangzhou Dianzi University, Hangzhou 310018, China 2. Key Laboratory of Brain-Computer Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China 3. School of Automation and Electrical Engineering, University of Jinan, Jinan 250022, China |
引用本文:
金国美,佘青山,张敏,马玉良,张建海,孙明旭. 多尺度补偿传递熵的皮层肌肉功能耦合方法[J]. 浙江大学学报(工学版), 2022, 56(6): 1152-1158, 1256.
Guo-mei JIN,Qing-shan SHE,Min ZHANG,Yu-liang MA,Jian-hai ZHANG,Ming-xu SUN. Functional cortical muscle coupling method of multi-scale compensated transfer entropy. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1152-1158, 1256.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.012
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1152
|
1 |
CHEN X L, XIE P, ZHANG Y Y, et al Multiscale information transfer in functional corticomuscular coupling estimation following stroke: a pilot study[J]. Frontiers in Neurology, 2018, 9: 287
doi: 10.3389/fneur.2018.00287
|
2 |
MEHRKANOON S, BREAKSPEAR M, BOONSTRA T W, et al The reorganization of corticomuscular coherence during a transition between sensorimotor states[J]. Neuroimage, 2014, 100: 692- 702
doi: 10.1016/j.neuroimage.2014.06.050
|
3 |
WALKER S, PIITULAINEN H, MANLANGIT T, et al Older adults show elevated intermuscular coherence in eyes-open standing but only young adults increase coherence in response to closing the eyes[J]. Experimental Physiology, 2020, 105 (6): 1000- 1011
doi: 10.1113/EP088468
|
4 |
HICKEY P, MERSEAL H, PATEL A D, et al Memory in time: neural tracking of low-frequency rhythm dynamically modulates memory formation[J]. Neuroimage, 2020, 213: 116693
doi: 10.1016/j.neuroimage.2020.116693
|
5 |
SCHREIBER T Measuring information transfer[J]. Physical Review Letters, 2000, 85 (2): 461- 464
doi: 10.1103/PhysRevLett.85.461
|
6 |
REN W, LI B, HAN M A novel granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series[J]. Physica A: Statistical Mechanics and its Applications, 2020, 541: 123245
doi: 10.1016/j.physa.2019.123245
|
7 |
FAES L, NOLLO G, PORTA A Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series[J]. Entropy, 2013, 15 (1): 198- 219
doi: 10.3390/e15010198
|
8 |
谢平, 杨芳梅, 李欣欣, 等 基于变分模态分解-传递熵的脑肌电信号耦合分析[J]. 物理学报, 2016, 65 (11): 118701 XIE Ping, YANG Fang-mei, LI Xin-xin, et al Functional coupling analyses of electroencephalogram and electromyogram based on variational mode decomposition-transfer entropy[J]. Acta Physica Sinica, 2016, 65 (11): 118701
doi: 10.7498/aps.65.118701
|
9 |
马鹏刚, 佘青山, 高云园, 等 基于多元经验模态分解-传递熵的脑肌电信号耦合分析[J]. 传感技术学报, 2018, 31 (6): 904- 914 MA Peng-gang, SHE Qing-shan, GAO Yun-yuan, et al Functional coupling analyses of EEG and EMG based on multivariate empirical mode decomposition[J]. Chinese Journal of Sensors and Actuators, 2018, 31 (6): 904- 914
doi: 10.3969/j.issn.1004-1699.2018.06.016
|
10 |
郑潜, 乔丹, 郎恂, 等 基于噪声辅助快速多维经验模式分解的运动想象脑电信号分类方法[J]. 智能科学与技术学报, 2020, 2 (3): 240- 250 ZHENG Qian, QIAO Dan, LANG Xun, et al Classification of motor imagery signals using noise-assisted fast multivariate empirical mode decomposition[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2 (3): 240- 250
doi: 10.11959/j.issn.2096-6652.202026
|
11 |
YANG R, LV Y, SONG G B Multi-fault diagnosis of rolling bearings via adaptive projection intrinsically transformed multivariate empirical mode decomposition and high order singular value decomposition[J]. Sensors, 2018, 18 (4): 1210
doi: 10.3390/s18041210
|
12 |
YUAN R, LV Y, LI H, et al Robust fault diagnosis of rolling bearings using multivariate intrinsic multiscale entropy analysis and neural network under varying operating conditions[J]. IEEE Access, 2019, 7: 130804- 130819
doi: 10.1109/ACCESS.2019.2939546
|
13 |
BRIGO F, ZELANO J Seizures and stroke: new insights transform an old research field[J]. Epilepsy and Behavior, 2020, 104: 106218
doi: 10.1016/j.yebeh.2019.03.023
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|