| 交通工程 |
|
|
|
|
| 基于残差单发多框检测器模型的交通标志检测与识别 |
张淑芳( ),朱彤 |
| 天津大学 电气自动化与信息工程学院,天津 300072 |
|
| Traffic sign detection and recognition based on residual single shot multibox detector model |
Shu-fang ZHANG( ),Tong ZHU |
| School of Electronical and Information Engineering, Tianjin University, Tianjin 300072, China |
| 1 |
RUTA A, LI Y M, LIU X H. Detection, tracking and recognition of traffic signs from video input [C]// Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems. Beijing: IEEE, 2008: 55–60.
|
| 2 |
ABUKHAIT J, ABDEL-QADER I, OH J S, et al Road sign detection and shape recognition invariant to sign defects[J]. Social Science Electronic Publishing, 2012, 61 (1): 1- 6
|
| 3 |
刘芳, 邹琪 基于视觉注意机制的交通标志检测[J]. 计算机工程, 2013, 39 (2): 192- 196 LIU Fang, ZOU Qi Traffic sign detection based on visual attention mechanism[J]. Computer Engineering, 2013, 39 (2): 192- 196
|
| 4 |
HUANG Z Y, YU Y L, GU J, et al An efficient method for traffic sign recognition based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2017, 47 (4): 920- 933
|
| 5 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Advances in Neural Information Processing Systems 25. Nevada: NIPS, 2012: 1097–1105.
|
| 6 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Ohio: IEEE, 2014: 580–587.
|
| 7 |
GIRSHICK R. Fast R-CNN [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440–1448.
|
| 8 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]// Advances in Neural Information Processing Systems 28. Montreal: NIPS, 2015: 91–99.
|
| 9 |
DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks [C]// Advances in Neural Information Processing Systems 29. Barcelona: NIPS, 2016: 379–387.
|
| 10 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision And Pattern. Nevada: IEEE, 2016: 779–788.
|
| 11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the 2016 European Conference on Computer Vision. Amsterdam: ECCV, 2016: 21–37.
|
| 12 |
RUSSAKOVSKY O, DENG J, SU H, et al ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252
|
| 13 |
EVERINGHAM M, GOOL L, WILLIAMS C K, et al The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88 (2): 202- 228
|
| 14 |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign detection benchmark[EB/OL]. [2013-11-05]. http://benchmark.ini.rub.de/?section=gtsdb&subsection=news.
|
| 15 |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark[EB/OL]. [2012-03-16]. http://benchmark.ini.rub.de/?section=gtsrb&subsection=news.
|
| 16 |
TIMOFTE R. BelgiumTS dataset [EB/OL]. [2014-02-18]. http://btsd.ethz.ch/shareddata/.
|
| 17 |
ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild [C]// Proceedings of the 2016 IEEE Conference on Computer Vision And Pattern Recognition. Nevada: IEEE, 2016: 2110–2118.
|
| 18 |
MENG Z B, FAN X C, CHEN X, et al. Detecting small signs from large images [C]// Proceedings of the 2017 IEEE International Conference on Information Reuse and Integration. California: IEEE, 2017: 217–224.
|
| 19 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C] // Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Nevada: IEEE, 2016: 770–778.
|
| 20 |
SIMON-YAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// International Conference on Learning Representations. San Diego: ICLR, 2015: 1-14.
|
| 21 |
SHELHAMER E, LONG J, DARRELL T, et al Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651
|
| 22 |
HARIHARAN B, ARBELAEZ P, GIRSHICK R, et al. Hypercolumns for object segmentation and fine-grained localization [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Massachusetts: IEEE, 2015: 447–456.
|
| 23 |
LIU W, RABINOVICH A, BERG A C. ParseNet: looking wider to see better [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Massachusetts: IEEE, 2015: 1–11.
|
| 24 |
JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding [C]// ACM International Conference on Multimedia. Florida: ACM, 2014: 675–678.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|