自动化技术、计算机技术 |
|
|
|
|
基于多尺度通道重校准的乳腺癌病理图像分类 |
明涛1,王丹2,郭继昌1,*( ),李锵3 |
1. 天津大学 电气自动化与信息工程学院,天津 300072 2. 天津医科大学 总医院病理科,天津 300052 3. 天津大学 微电子学院,天津 300072 |
|
Breast cancer histopathological image classification using multi-scale channel squeeze-and-excitation model |
Tao MING1,Dan WANG2,Ji-chang GUO1,*( ),Qiang LI3 |
1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China 2. Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China 3. School of Microelectronics, Tianjin University, Tianjin 300072, China |
引用本文:
明涛,王丹,郭继昌,李锵. 基于多尺度通道重校准的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2020, 54(7): 1289-1297.
Tao MING,Dan WANG,Ji-chang GUO,Qiang LI. Breast cancer histopathological image classification using multi-scale channel squeeze-and-excitation model. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1289-1297.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.006
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1289
|
1 |
FAN L, STRASSER-WEIPPL K, LI J J, et al Breast cancer in China[J]. Lancet Oncology, 2014, 15 (7): 279- 289
doi: 10.1016/S1470-2045(13)70567-9
|
2 |
LEONG A S-Y, ZHUANG Z P The changing role of pathology in breast cancer diagnosis and treatment[J]. Pathobiology, 2011, 78: 99- 114
doi: 10.1159/000292644
|
3 |
VETA M, PLUIM J P, VAN DIEST P J, et al Breast cancer histopathology image analysis: a review[J]. IEEE Transactions on Biomedical Engineering, 2014, 61 (5): 1400- 1411
doi: 10.1109/TBME.2014.2303852
|
4 |
SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al A dataset for breast cancer histopathological image classification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63 (7): 1455- 1462
doi: 10.1109/TBME.2015.2496264
|
5 |
GUPTA V, BHAVSAR A. Breast cancer histopathological image classification: is magnification important? [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE, 2017: 769-776.
|
6 |
CIRESAN D C, GIUSTI A, GAMBARDELLA L M, et al. Mitosis detection in breast cancer histology images with deep neural networks [C] // Proceedings of Medical Image Computing and Computer-Assisted Intervention. Berlin, German: Springer, 2013: 411-418.
|
7 |
ARAúJO T, ARESTA G, CASTRO E, et al Classification of breast cancer histology images using convolutional neural networks[J]. PLos One, 2017, 12 (6): e0177544
doi: 10.1371/journal.pone.0177544
|
8 |
SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al. Breast cancer histopathological image classification using convolutional neural networks [C] // Proceedings of International Joint Conference on Neural Networks. Vancouver, Canada: IEEE, 2016: 2560-2567.
|
9 |
BAYRAMOGLU N, KANNALA J, HEIKKIL? J. Deep learning for magnification independent breast cancer histopathology image classification [C] // Proceedings of International Conference on Pattern Recognition. Cancun, Mexico: IEEE, 2016: 2441-2446.
|
10 |
SONG Y, ZOU J J, CHANG H, et al. Adapting Fisher vectors for histopathology image classification [C] // Proceedings of the IEEE 14th International Symposium on Biomedical Imaging. Melbourne: IEEE, 2017: 600-603.
|
11 |
HU J, SHEN L, SUN G. Squeeze-and-Excitation network [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
12 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778.
|
13 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. [2019–03–01]. https://arxiv.org/abs/1409.0473.
|
14 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of Neural Information Processing Systems. Long Beach, USA: Curran Associates, Inc., 2017: 5998-6008.
|
15 |
WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 6450-6458.
|
16 |
ZHU Y Y, WANG J, XIE L X, et al. Attention-based pyramid aggregation network for visual place recognition [C] // Proceedings of International Conference on Multimedia. Seoul, Korea: ACM, 2018: 99-107.
|
17 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. 2019–04–23. https://arxiv.org/abs/1409.1556.
|
18 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1-9.
|
19 |
NAIR V, HINTON G E. rectified linear units improve restricted Boltzmann machine [C] // International Conference on International Conference on Machine Learning. Haifa, Israel: Omnipress, 2010: 807-814.
|
20 |
HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916
doi: 10.1109/TPAMI.2015.2389824
|
21 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C] // Proceedings of European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
|
22 |
LIN T, DOLLAR P, GIRSHICK R. Feature pyramid networks for object detection [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
23 |
ZHAO H, SHI J, QI X, et el. Pyramid scene parsing network [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239.
|
24 |
ZHAO H, QI X, SHEN X, et al. ICNet for real-time semantic segmentation on high-resolution images [C] // Proceedings of European Conference on Computer Vision. Munich, Germany: Springer, 2018: 418-434.
|
25 |
KAMNITASA K, LEDIG C, NEWCOMBE V F, et al Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Medical Image Analysis, 2017, 36: 61- 78
doi: 10.1016/j.media.2016.10.004
|
26 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performing deep learning library [C] // Proceedings of Neural Information Processing Systems. Vancouver: Curran Associates, Inc., 2019: 8024-8035.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|