计算机技术与图像处理 |
|
|
|
|
多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法 |
洪炎佳1( ),孟铁豹2,黎浩江2,刘立志2,李立2,徐硕瑀2,郭圣文1,*( ) |
1. 华南理工大学 生物医学工程系,广东 广州 510006 2. 中山大学 肿瘤防治中心,广东 广州 510060 |
|
Deep segmentation method of tumor boundaries from MR images of patients with nasopharyngeal carcinoma using multi-modality and multi-dimension fusion |
Yan-jia HONG1( ),Tie-bao MENG2,Hao-jiang LI2,Li-zhi LIU2,Li LI2,Shuo-yu XU2,Sheng-wen GUO1,*( ) |
1. Department of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China 2. Medical Image Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China |
引用本文:
洪炎佳,孟铁豹,黎浩江,刘立志,李立,徐硕瑀,郭圣文. 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报(工学版), 2020, 54(3): 566-573.
Yan-jia HONG,Tie-bao MENG,Hao-jiang LI,Li-zhi LIU,Li LI,Shuo-yu XU,Sheng-wen GUO. Deep segmentation method of tumor boundaries from MR images of patients with nasopharyngeal carcinoma using multi-modality and multi-dimension fusion. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 566-573.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.017
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I3/566
|
1 |
CHANG E T, ADAMI H O The enigmatic epidemiology of nasopharyngeal carcinoma[J]. Cancer Epidemiology and Prevention Biomarkers, 2006, 15 (10): 1765- 1777
doi: 10.1158/1055-9965.EPI-06-0353
|
2 |
STEWART B W, WILD C. World cancer report 2014 [M]. Lyon: International Agency for Research on Cancer , 2014.
|
3 |
邓伟, 黄天壬, 陈万青, 等 中国2003—2007年鼻咽癌发病与死亡分析[J]. 肿瘤, 2012, 32 (3): 189- 193 DENG Wei, HUANG Tian-Ren, CHEN Wan-Qing, et al Analysis of the incidence and mortality of nasopharyngeal carcinoma in China from 2003 to 2007[J]. Tumor, 2012, 32 (3): 189- 193
doi: 10.3781/j.issn.1000-7431.2012.03.007
|
4 |
HUANG K W, ZHAO Z Y, GONG Q, et al. Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy [C] // 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE, 2015: 2968-2972.
|
5 |
RITTHIPRAVAT P, TATANUM C, BHONGMAKAPAT T, et al. Automatic segmentation of nasopharyngeal carcinoma from CT images [C] // 2008 International Conference on BioMedical Engineering and Informatics. Sanya: IEEE Computer Society, 2008, 2: 18-22.
|
6 |
ZHOU J, CHAN K L, XU P, et al. Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine [C] // 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006. Arlington: IEEE, 2006: 1364-1367.
|
7 |
MOHAMMED M A, GHANI M K A, HAMED R I, et al Artificial neural networks for automatic segmentation and identification of nasopharyngeal carcinoma[J]. Journal of Computer Science, 2017, 21: 263- 274
doi: 10.1016/j.jocs.2017.03.026
|
8 |
MEN K, CHEN X, ZHANG Y, et al Deep deconvolutional neural network for Target segmentation of nasopharyngeal cancer in Planning computed Tomography images[J]. Frontiers in Oncology, 2017, 7: 315
doi: 10.3389/fonc.2017.00315
|
9 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint arXiv: 1409.1556, 2014.
|
10 |
LI Q L, XU Y, CHEN Z, et al Tumor segmentation in contrast-enhanced magnetic resonance imaging for nasopharyngeal carcinoma: deep learning with convolutional neural network[J]. BioMed Research International, 2018, 2018, 5: 1- 7
|
11 |
MA Z Q, WU X, SONG Q, et al Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut[J]. Experimental and Therapeutic Medicine, 2018, 16 (3): 2511- 2521
|
12 |
LI X M, CHEN H, QI X J, et al H-DenseUNet: hybrid densely connected unet for liver and tumor segmentation from ct volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37 (12): 2663- 2674
doi: 10.1109/TMI.2018.2845918
|
13 |
MILLETARI F, NAVAB N, AHMADI S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C] // 2016 Fourth International Conference on 3D Vision (3DV). California: IEEE, 2016: 565-571.
|
14 |
ABADI M, BARHAM P, CHEN J, et al. Tensorflow: A system for large-scale machine learning[C] // 12th Symposium on Operating Systems Design and Implementation. Savannah, GA: OSDI, 2016: 265-283.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|