Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 574-580    DOI: 10.3785/j.issn.1008-973X.2020.03.018
航空航天技术     
噪声测试系统精度有源-无源联合测量评估方法
顾易帆(),王立平,丁旭,王志宇*(),莫炯炯,郁发新
浙江大学 航空航天学院,浙江 杭州 310027
Active-passive joint measurement and evaluation method for precision of noise test system
Yi-fan GU(),Li-ping WANG,Xu DING,Zhi-yu WANG*(),Jiong-jiong MO,Fa-xin YU
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1138 KB)   HTML
摘要:

通过在无源器件后置有源增益器件提高被测件整体的增益,抑制系统中非零误差对噪声测试结果的影响;结合单一有源器件及级联有源-无源器件的2次噪声测试结果,采用噪声系数直减法,将系统测量评估精度的表征参数由噪声系数转化为级联无源器件的插损值;并以具有更高插损测量精度的矢量网络分析仪插损测试结果作为参考基准,定量评估噪声测试系统的精度. 经与传统无源测量评估方法的实测对比验证得,在2~40 GHz频段内,所提方法对基于Y因子法的噪声测试系统的评估精度为–0.5~0.5 dB,对基于矢量冷源法的噪声测试系统的评估精度为–0.3~0.3 dB,评估精度波动范围均小于被测系统的2倍测试不确定度,较传统无源测量评估方法评估精度提升了3倍以上.

关键词: 噪声测试系统非零误差有源-无源联合测量噪声系数直减法评估精度    
Abstract:

The gain of the device under test was increased by setting an active gain device behind a passive device, which suppressed the influence of system non-zero error on the noise test results. Combining the twice noise test results of a single active device and a cascaded active-passive device, the characterization parameter of the measurement and evaluation precision of the system was converted from the noise figure into the insertion loss of the cascaded passive device by employing the noise figure direct-subtraction method. Also, the accuracy of the noise test system was quantitatively evaluated by using the insertion loss test value based on vector network analyzer with higher insertion loss measurement accuracy as a reference. The comparison verification test with the traditional passive measurement evaluation method show that, by the proposed method, the evaluation precision of noise test system based on the Y-factor method was –0.5~0.5 dB in the frequency band of 2~40 GHz, while the evaluation precision of noise test system based on the vector cold source method was –0.3~0.3 dB; the range of evaluation precision fluctuation is less than two times the test uncertainty of the system under test, which is much lower than the fluctuation range of being more than six times the uncertainty by the traditional passive measurement evaluation method.

Key words: noise test system    non-zero error    active-passive joint measurement    noise figure direct-subtraction method    evaluation precision
收稿日期: 2019-04-23 出版日期: 2020-03-05
CLC:  TN 407  
基金资助: 国家自然科学基金资助项目(61604128);中央高校基本科研业务费专项资助项目(2017QN81002)
通讯作者: 王志宇     E-mail: yfgu@zju.edu.cn;zywang@zju.edu.cn
作者简介: 顾易帆(1994—),男,硕士生,从事射频测试与建模研究. orcid.org/0000-0001-8223-0181. E-mail: yfgu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
顾易帆
王立平
丁旭
王志宇
莫炯炯
郁发新

引用本文:

顾易帆,王立平,丁旭,王志宇,莫炯炯,郁发新. 噪声测试系统精度有源-无源联合测量评估方法[J]. 浙江大学学报(工学版), 2020, 54(3): 574-580.

Yi-fan GU,Li-ping WANG,Xu DING,Zhi-yu WANG,Jiong-jiong MO,Fa-xin YU. Active-passive joint measurement and evaluation method for precision of noise test system. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 574-580.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.018        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/574

图 1  6 dB衰减器噪声系数与插入损耗测试结果
图 2  噪声测试系统非零误差现象
图 3  不同噪声接收机下的非零误差
图 4  不同噪声接收机下6 dB衰减器的噪声系数
图 5  不同增益下的低噪声放大器(LNA)噪声系数
图 6  有源-无源联合测量评估方法数据采集系统示意图
ΔNtotal/dB ΔNLNA/dB ΔLatt/dB Natt*/dB
–0.1 –0.1 –0.1 6.28
–0.1 –0.1 0 6.00
–0.1 –0.1 0.1 5.70
–0.1 0 –0.1 5.90
–0.1 0 0 5.59
–0.1 0 0.1 5.24
–0.1 0.1 –0.1 5.48
–0.1 0.1 0 5.12
–0.1 0.1 0.1 4.72
0 –0.1 –0.1 6.63
0 –0.1 0 6.38
0 –0.1 0.1 6.10
0 0 –0.1 6.29
0 0 0 6.00
0 0 0.1 5.69
0 0.1 –0.1 5.90
0 0.1 0 5.58
0 0.1 0.1 5.22
0.1 –0.1 –0.1 6.97
0.1 –0.1 0 6.73
0.1 –0.1 0.1 6.48
0.1 0 –0.1 6.65
0.1 0 0 6.39
0.1 0 0.1 6.10
0.1 0.1 –0.1 6.29
0.1 0.1 0 6.00
0.1 0.1 0.1 5.68
表 1  6 dB衰减器噪声系数计算值
条件 说明
环境温度 295 K
湿度 46%
洁净度 Class 1000
电磁屏蔽环境 DC-40 GHz
测试仪器 Keysight? NFA N8976B(10 MHz~40 GHz NFA)
Keysight? PNAX N5244A with Opt.029
(10 MHz~43.5 GHz VNA)
测试附件 Gore? OKO(DC-40 GHz射频缆线)
Maury? CAL KIT 8770E(2.92 mm同轴校准件)
Keysight? U2022XA(50 MHz~40 GHz功率计)
Keysight? 346CK01(1~50 GHz噪声源)
Keysight? 11904B(2.4 mm/2.92 mm转接头)
被测件 Keysight? U7227F(2~50 GHz LNA)
Weinschel? 54A-6(衰减器)
表 2  数据采集系统所用仪器与测试条件
图 7  有源-无源联合测量评估方法数据采集系统实物图
图 8  传统无源法与有源-无源联合法的噪声测试系统评估精度对比
图 9  不同噪声测试系统的有源-无源联合测量、评估精度
1 KEYSIGHT TECHNOLOGIES. Noise figure measurement accuracy: the Y-factor method [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5952-3706E.pdf?id=1000000179:epsg:apn.
2 KEYSIGHT TECHNOLOGIES. Fundamentals of RF and microwave noise figure measurements [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5952-8255E.pdf?id=1000001634:epsg:apn.
3 KEYSIGHT TECHNOLOGIES. NFA X-series noise figure analyzer: multi-touch N8973B, N8974B, N8975B, N8976B [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5992-1270EN.pdf?id=2702444.
4 DUNSMORE J P. Handbook of microwave component measurements with advanced VNA techniques[M]. Hoboken: JOHN WILEY & SONS Inc, 2012.
5 KEYSIGHT TECHNOLOGIES. High-accuracy noise figure measurements using the PNA-X series network analyzer [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5990-5800EN.pdf?id=1961132.
6 DUNSMORE J, FELLOW K. Noise figure verification of Y-factor and cold source methods [C] // International Conference on Noise and Fluctuations. Vilnius: IEEE, 2017: 1-4.
7 DUNSMORE J, WOOD S. Vector corrected noise figure and noise parameter measurements of differential amplifiers [C] // Microwave Conference. Rome: IEEE, 2009: 707-710.
8 KELLOGG K, DUNLEAVY L, SNIDER A D. Temperature dependent noise system verification and the relationship of passive noise parameters to available gain calculations [C] // 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON). Key: IEEE, 2018: 1-4.
9 KELLOGG K, DUNLEAVY L, SKIDMORE S, et al. The impact of ENR and coaxial calibration in accurate on-wafer noise parameter testing for ultra-low noise devices [C] // 201688th ARFTG Microwave Measurement Conference (ARFTG). Austin: IEEE, 2016: 1-4.
10 RANDA J Uncertainty analysis for noise-parameter measurements at NIST[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (4): 1146- 1151
doi: 10.1109/TIM.2008.2007044
11 HSIAO H F, TU C H, CHANG D C, et al. Noise figure verification using cold-Source and Y-factor technique for amplifier and down-converted mixer [C] // Microwave Conference. Sendai: IEEE, 2014: 901-903.
12 BELOSTOTSKI L, HASLETT J W Evaluation of tuner-based noise-parameter extraction methods for very low noise amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58 (1): 236- 250
doi: 10.1109/TMTT.2009.2036411
13 GU D, RANDA J, BILLINGER R, et al. A verification method for noise-temperature measurements on cryogenic low-noise amplifiers [C] // 2012 Conference on Precision electromagnetic Measurements. Washington DC: IEEE, 2012: 32-33.
14 WU A, LI C, SUN J, et al. Development of a verification technique for on-wafer noise figure measurement systems [C] // 2017 90th ARFTG Microwave Measurement Symposium (ARFTG). Boulder: IEEE, 2017: 1-4.
15 WONG K, POLLARD R, SHOULDERS B, et al. Using a mismatch transmission line to verify accuracy of a high performance noise figure measurement system [C] // 2007 69th ARFTG Conference. Honolulu: IEEE, 2007: 1-5.
16 RANDA J, DUNSMORE J, GU D, et al Verification of noise-parameter measurements and uncertainties[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (11): 3685- 3693
doi: 10.1109/TIM.2011.2138270
17 KEYSIGHT TECHNOLOGIES. Non-zero noise figureafter calibration [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5989-0270EN.pdf?id=405518.
18 WIATR W, WALKER D Systematic errors of noise parameter determination caused by imperfect source impedance measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54 (2): 696- 700
doi: 10.1109/TIM.2005.843534
19 SEELMANN-EGGEBERT M, BALDISCHWEILER B, AJA B, et al. Figures of uncertainty for noise measurements [C] // 81st ARFTG Microwave Measurement Conference. Seattle: IEEE, 2013: 1-4.
20 RUDOLPH M, HEYMANN P, BOSS H Impact of receiver bandwidth and nonlinearity on noise measurement methods[J]. IEEE Microwave Magazine, 2010, 11 (6): 110- 121
doi: 10.1109/MMM.2010.937715
21 KEYSIGHT TECHNOLOGIES. Noise figure uncertainty [EB/OL]. [2019-04-10]. http://rfmw.em.keysight.com/NFUcalc.
No related articles found!