交通工程 |
|
|
|
|
预训练长短时空交错Transformer在交通流预测中的应用 |
马莉1,2( ),王永顺1,*( ),胡瑶1,范磊3 |
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 2. 兰州石化职业技术大学 电子电气工程学院,甘肃 兰州 730060 3. 兰州博文科技学院 电信工程学院,甘肃 兰州 730101 |
|
Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications |
Li MA1,2( ),Yongshun WANG1,*( ),Yao HU1,Lei FAN3 |
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. School of Electronic and Electrical Engineering, Lanzhou Petrochemical University of Vocational Technology, Lanzhou 730060, China 3. School ofTelecommunication Engineering, Lanzhou Bowen College of Science and Technology, Lanzhou 730101, China |
引用本文:
马莉,王永顺,胡瑶,范磊. 预训练长短时空交错Transformer在交通流预测中的应用[J]. 浙江大学学报(工学版), 2025, 59(4): 669-678.
Li MA,Yongshun WANG,Yao HU,Lei FAN. Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 669-678.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.002
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I4/669
|
1 |
TEDJOPURNOMO D A, BAO Z, ZHENG B, et al A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (4): 1544- 1561
|
2 |
KUMAR S V, VANAJAKSHI L Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7 (3): 21
doi: 10.1007/s12544-015-0170-8
|
3 |
CASTRO-NETO M, JEONG Y S, JEONG M K, et al Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36 (3): 6164- 6173
doi: 10.1016/j.eswa.2008.07.069
|
4 |
ZHANG J, ZHENG Y, QI D Deep spatio-temporal residual networks for citywide crowd flows prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 1655- 1661
|
5 |
YAO H, TANG X, WEI H, et al Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 5668- 5675
doi: 10.1609/aaai.v33i01.33015668
|
6 |
SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network [C]// Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1 . Montreal: ACM, 2015: 802–810.
|
7 |
YAO H, WU F, KE J, et al Deep multi-view spatial-temporal network for taxi demand prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 2588- 2595
|
8 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. (2018–02–22)[2024–07–23]. https://arxiv.org/pdf/1707.01926.
|
9 |
LIN H, BAI R, JIA W, et al. Preserving dynamic attention for long-term spatial-temporal prediction [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . [S. l.]: ACM, 2020: 36–46.
|
10 |
BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems . Vancouver: ACM, 2020: 17804–17815.
|
11 |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence . Stockholm: IJCAI, 2018: 3634–3640.
|
12 |
WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling [C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence . Macao: IJCAI, 2019: 1907−1913.
|
13 |
CHOI J, CHOI H, HWANG J, et al Graph neural controlled differential equations for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (6): 6367- 6374
doi: 10.1609/aaai.v36i6.20587
|
14 |
黄靖, 钟书远, 文元桥, 等 用于交通流预测的自适应图生成跳跃网络[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1825- 1833 HUANG Jing, ZHONG Shuyuan, WEN Yuanqiao, et al Adaptive graph generation jump network for traffic flow prediction[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1825- 1833
|
15 |
贺文武, 裴博彧, 李雅婷, 等 基于双向自适应门控图卷积网络的交通流预测[J]. 交通运输系统工程与信息, 2023, 23 (1): 187- 197 HE Wenwu, PEI Boyu, LI Yating, et al Traffic flow forecasting based on bi-directional adaptive gating graph convolutional networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23 (1): 187- 197
|
16 |
闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155 YAN Xu, FAN Xiaoliang, ZHENG Chuanpan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1147- 1155
|
17 |
WANG B, LONG Z, SHENG J, et al Spatial–temporal similarity fusion graph adversarial convolutional networks for traffic flow forecasting[J]. Journal of the Franklin Institute, 2024, 361 (17): 107299
doi: 10.1016/j.jfranklin.2024.107299
|
18 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2023–08–02)[2024–07–23]. https://arxiv.org/pdf/1706.03762.
|
19 |
JIANG J, HAN C, ZHAO W X, et al PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (4): 4365- 4373
doi: 10.1609/aaai.v37i4.25556
|
20 |
LIU H, DONG Z, JIANG R, et al. Spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecasting [C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management . Birmingham: ACM, 2023: 4125–4129.
|
21 |
GAO H, JIANG R, DONG Z, et al. Spatial-temporal-decoupled masked pre-training for spatiotemporal forecasting [EB/OL]. (2024–04–28)[2024–07–23]. https://arxiv.org/pdf/2312.00516.
|
22 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies . Minneapolis: ACL, 2019: 4171–4186.
|
23 |
BAO H, DONG L, PIAO S, et al. BEiT: BERT pre-training of image transformers [EB/OL]. (2022–09–03)[2024–07–23]. https://arxiv.org/pdf/2106.08254.
|
24 |
NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers [EB/OL]. (2023–03–05)[2024–07–23]. https://arxiv.org/pdf/2211.14730.
|
25 |
WANG Z, LIU J C Translating math formula images to LaTeX sequences using deep neural networks with sequence-level training[J]. International Journal on Document Analysis and Recognition, 2021, 24 (1/2): 63- 75
|
26 |
LI M, ZHU Z Spatial-temporal fusion graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4189- 4196
doi: 10.1609/aaai.v35i5.16542
|
27 |
GUO S, LIN Y, FENG N, et al Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 922- 929
doi: 10.1609/aaai.v33i01.3301922
|
28 |
LAN S, MA Y, HUANG W, et al. DSTAGNN: dynamic spatial-temporal aware graph neural network for traffic flow forecasting [C]// Proceeding of the 39th International Conference on Machine Learning . [S. l.]: PMLR, 2022, 162: 11906–11917.
|
29 |
GUO S, LIN Y, WAN H, et al Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (11): 5415- 5428
doi: 10.1109/TKDE.2021.3056502
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|