Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (2): 300-309    DOI: 10.3785/j.issn.1008-973X.2025.02.008
交通工程、土木工程     
考虑跨层特征融合的抛洒风险车辆检测方法
何永福(),谢世维,于佳禄,陈思宇
重庆交通大学 交通运输学院,重庆 400074
Detection method for spillage risk vehicle considering cross-level feature fusion
Yongfu HE(),Shiwei XIE,Jialu YU,Siyu CHEN
College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
 全文: PDF(4195 KB)   HTML
摘要:

面对货运车辆抛洒风险检测的难题,针对现有方法存在的抛洒风险关键特征提取能力不足、特征跨层融合不充分的问题,提出面向货运车辆的抛洒风险检测方法(SRVDNet). 骨干网络引入大核可选择性感受野机制,增强网络对货运车辆抛洒风险特征的学习能力. 颈部网络引入聚集-分发特征融合机制,实现特征跨层融合,为检测头提供丰富的车厢类型、篷布边缘细节纹理、货物轮廓形状等信息. 采用真实的高速公路货运车辆数据集,验证所提方法的效果. 实验结果表明,SRVDNet表现出更优的性能,检测精度达到81.5%,与YOLOv5、YOLOv6、YOLOv8、RT-DETR、PP-YOLOE、YOLOv9等车辆检测SOTA方法相比,mAP@0.5分别提升了3.70%、3.09%、2.86%、1.37%、1.41%、2.00%,且模型参数量相对较小,检测速度较高,有效提升了在货物装载不规则、少量货物和满载货物等场景下的抛洒风险识别能力,有助于抛洒物的源头治理,增强高速公路安全风险的识别预警能力.

关键词: 智能交通抛洒风险检测目标检测车辆检测跨层特征融合    
Abstract:

An original spillage risk vehicle detection method called spillage risk vehicles detection network (SRVDNet) was proposed faced with the challenge of detecting spillage risk vehicles, specifically designed for high-speed freight, to resolve the issues which insufficient extraction of spillage risk vehicle features and inadequate fusion of deep features in existing methods. A backbone network incorporating large separable kernel was introduced to enhance the network’s learning capabilities for spillage risk features in freight vehicles. A neck network integrating feature gather-and-distribute mechanisms was introduced to provide the detection head with richer information such as freight carriage types, tarpaulin edge textures and cargo shape contours. The proposed method was validated using a real high-speed highway freight vehicle dataset. The experimental results demonstrate that SRVDNet exhibits superior performance, achieving a detection accuracy of 81.5%. SRVDNet shows improvements of 3.70%, 3.09%, 2.86%, 1.37%, 1.41%, 2.00%, respectively, in terms of mAP@0.5 metrics compared with existing state-of-the-art (SOTA) object detection algorithms such as YOLOv5, YOLOv6, YOLOv8, RT-DETR, PP-YOLOE, YOLOv9. The model parameters were relatively smaller, while detection speed remains high. This method effectively enhances the ability to identify spillage risks in scenarios with irregular cargo loading, low cargo volume, and full cargo loads, thereby contributing to source control of spills and strengthening the capability for early warning of safety risks on highways.

Key words: intelligent transportation    spillage risk detection    object detection    vehicle detection    cross-level feature fusion
收稿日期: 2024-05-29 出版日期: 2025-02-11
CLC:  U 491  
基金资助: 国家自然科学基金青年科学基金资助项目(52202490);重庆市教委科学技术研究资助项目(KJQN202000735);重庆交通大学校内科学基金课题资助项目(20JDKJC-A023).
作者简介: 何永福(1988—),男,副教授,博士,从事车路协同与自动驾驶的研究. orcid.org/0000-0001-8357-1770. E-mail:heyongfu@cqjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何永福
谢世维
于佳禄
陈思宇

引用本文:

何永福,谢世维,于佳禄,陈思宇. 考虑跨层特征融合的抛洒风险车辆检测方法[J]. 浙江大学学报(工学版), 2025, 59(2): 300-309.

Yongfu HE,Shiwei XIE,Jialu YU,Siyu CHEN. Detection method for spillage risk vehicle considering cross-level feature fusion. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 300-309.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.008        https://www.zjujournals.com/eng/CN/Y2025/V59/I2/300

图 1  抛洒风险车辆检测框图
图 2  SRVDNet网络的结构
图 3  大核可选择性感受野机制
图 4  聚集-分发跨层特征融合网络的结构
网络LSKGDP/%R/%F1/%mAP@0.5/%mAP@[0.5:0.95]/%
SRVDNet73.0271.2672.1379.5060.67
$ \surd $78.0972.0974.9780.5261.27
$ \surd $74.2178.6576.3780.8761.25
$ \surd $$ \surd $79.0474.7976.8681.5061.87
表 1  消融试验的结果
图 5  训练过程的 Loss曲线和F1曲线
算法mAP@0.5/%mAP@[0.5:0.95]/%v/(帧·s?1)S/MB
YOLOv577.8058.156783.5
YOLOv678.4158.3473101.6
YOLOv878.6458.206783.5
RT-DETR80.1360.0428163.6
PPYOLOE80.0960.1633203.2
YOLOv979.5060.678160.3
SRVDNet81.5061.876962.7
表 2  不同算法在抛洒风险车辆数据集中的实验结果对比
图 6  不规则货物场景的检测结果对比
图 7  少量货物场景的检测结果对比
图 8  满载场景的检测结果对比
图 9  注意力特征图的对比
3 GUO Enqiang, FU Xinsha Dropped object detection method based on feature similarity learning[J]. Journal of South China University of Technology: Natural Science Edition, 2023, 51 (6): 30- 41
4 CHEN G, CHEN K, ZHANG L J, et al VCANet: vanishing-point-guided context-aware network for small road object detection[J]. Automotive Innovation, 2021, 4 (4): 400- 412
doi: 10.1007/s42154-021-00157-x
5 曹行健, 张志涛, 孔彦赞, 等 面向智慧交通的图像处理与边缘计算[J]. 中国图像图形学报, 2021, 27 (6): 1743- 1766
CAO Xingjian, ZHANG Zhitao, KONG Yanzan, et al The review of image processing and edge computing for intelligent transportation system[J]. Journal of Image Graphics, 2021, 27 (6): 1743- 1766
6 邵延华, 张铎, 楚红雨, 等 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44 (10): 3697- 3705
SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al A review of YOLO object detection based on deep learning[J]. Journal of Electronics and Information Technology, 2022, 44 (10): 3697- 3705
doi: 10.11999/JEIT210790
7 王潇, 李子琦, 高涛, 等 基于无损跨尺度特征融合的交通目标检测算法[J]. 中国公路学报, 2023, 36 (9): 315- 325
WANG Xiao, LI Ziqi, GAO Tao, et al Traffic target detection algorithm based on non-loss cross-scale feature fusion[J]. China Journal of Highway and Transport, 2023, 36 (9): 315- 325
8 WANG H, YU Y, CAI Y, et al Soft-weighted-average ensemble vehicle detection method based on single-stage and two-stage deep learning models[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6 (1): 100- 109
9 WANG Z, ZHAN J, DUAN C, et al A review of vehicle detection techniques for intelligent vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (8): 3811- 3831
doi: 10.1109/TNNLS.2021.3128968
10 张念, 张亮 基于深度学习的公路货车车型识别[J]. 交通运输工程学报, 2023, 23 (1): 268- 279
ZHANG Nian, ZHANG Liang Type recognition of highway trucks based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2023, 23 (1): 268- 279
11 马永杰, 马芸婷, 程时升, 等 基于改进 YOLOv3 模型与 Deep-SORT 算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21 (2): 222- 231
MA Yongjie, MA Yunting, CHENG Shisheng, et al Road vehicle detection method based on improved YOLOv3 model and Deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (2): 222- 231
1 蒋来 浅谈高速公路抛洒物危害与对策[J]. 道路交通管理, 2021, 39 (4): 36- 37
JIANG Lai Talking about hazard and countermeasure of highway dispersion[J]. Road Traffic Management, 2021, 39 (4): 36- 37
12 陈志军, 胡军楠, 冷姚, 等 基于轻量化网络和注意力机制的智能车快速目标识别方法[J]. 交通运输系统工程与信息, 2022, 22 (6): 105- 113
CHEN Zhijun, HU Junnan, LENG Yao, et al Intelligent vehicle target fast recognition based on lightweight networks and attention mechanism[J]. Transport Systems Engineering and Information, 2022, 22 (6): 105- 113
2 项新建, 胡海斌, 姚佳娜, 等 一种基于物影匹配算法的道路小目标跟踪方法[J]. 交通运输系统工程与信息, 2022, 22 (6): 85- 94
XIANG Xinjian, HU Haibin, YAO Jiana, et al A road small target tracking approach based on object-shadow matching algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (6): 85- 94
13 王博, 刘昌赫, 张驰, 等 基于道路监控的高速公路作业区碰撞风险预警[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1- 12
WANG Bo, LIU Changhe, ZHANG Chi, et al Crash risk early warning in highway work zone based on road surveillance camera[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1- 12
14 LIU W, ZHOU B, WANG Z, et al FPPNet: a fixed-perspective-perception module for small object detection based on background difference[J]. IEEE Sensors Journal, 2023, 23 (10): 11057- 11069
doi: 10.1109/JSEN.2023.3263539
15 刘小波, 肖肖, 王凌, 等 基于无锚框的目标检测方法及其在复杂场景下的应用进展[J]. 自动化学报, 2023, 49 (7): 1369- 1392
LIU Xiaobo, XIAO Xiao, WANG Ling, et al Anchor-free based target object detection methods and its application progress in complex scenes[J]. Acta Automatica Sinica, 2023, 49 (7): 1369- 1392
16 WANG H, LIU C, CAI Y, et al YOLOv8-QSD: an improved small object detection algorithm for autonomous vehicles based on YOLOv8[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 24 (73): 1- 16
17 WANG C Y, YEH I H, LIAO H Y M. Yolov9: learning what you want to learn using programmable gradient information [C]// European Conference on Computer Vision . Milan: [s. n.], 2024: 1−21.
18 SHI Y, LI S, LIU Z, et al MTP-YOLO: you only look once based maritime tiny person detector for emergency rescue[J]. Journal of Marine Science and Engineering, 2024, 12 (4): 669- 675
doi: 10.3390/jmse12040669
3 郭恩强, 符锌砂 基于特征相似性学习的抛洒物检测方法[J]. 华南理工大学学报: 自然科学版, 2023, 51 (6): 30- 41
19 李立, 平振东, 徐志刚, 等 高速公路行车风险路侧感知系统的设备优化布设[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1137- 1146
LI Li, PING Zhendong, XU Zhigang, et al Devices’ optimal deployment of roadside sensing system for expressway driving risk[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1137- 1146
20 LI Y, HOU Q, ZHENG Z, et al. Large selective kernel network for remote sensing object detection. [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Paris: IEEE, 2023: 16794-16805.
21 WANG C, HE W, NIE Y, et al Gold-YOLO: efficient object detector via gather-and-distribute mechanism[J]. Advances in Neural Information Processing Systems, 2024, 24 (36): 1- 19
22 CHEN W, LUO J, ZHANG F, et al A review of object detection: datasets, performance evaluation, architecture, applications and current trends[J]. Multimedia Tools and Applications, 2024, 24 (83): 1- 59
[1] 董红召,林少轩,佘翊妮. 交通目标YOLO检测技术的研究进展[J]. 浙江大学学报(工学版), 2025, 59(2): 249-260.
[2] 于家艺,吴秦. 基于上下文信息增强和深度引导的单目3D目标检测[J]. 浙江大学学报(工学版), 2025, 59(1): 89-99.
[3] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[4] 宋娟,贺龙喜,龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.
[5] 张会娟,李坤鹏,姬淼鑫,刘振江,刘建娟,张弛. 基于空间相关性增强的无人机检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 468-479.
[6] 邓天民,程鑫鑫,刘金凤,张曦月. 基于特征复用机制的航拍图像小目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 437-448.
[7] 宋耀莲,王粲,李大焱,刘欣怡. 基于改进YOLOv5s的无人机小目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(12): 2417-2426.
[8] 吕佳铭,张峰,罗亚波. 基于改进YOLOv5s的烟梗物料目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(12): 2438-2446.
[9] 莫恒辉,魏霖静. 基于改进YOLOv7的复杂环境下苹果目标检测[J]. 浙江大学学报(工学版), 2024, 58(12): 2447-2458.
[10] 杜丁健,高遵海,陈倬. 基于改进YOLOv5的枸杞虫害检测[J]. 浙江大学学报(工学版), 2024, 58(10): 1992-2000.
[11] 秦思怡,盖绍彦,达飞鹏. 混合采样下多级特征聚合的视频目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(1): 10-19.
[12] 何卫隆,王平,张爱华,梁婷婷,马强杰. 基于目标检测的焊接电弧形态在线定量检测[J]. 浙江大学学报(工学版), 2023, 57(9): 1903-1914.
[13] 孟闯,王慧. 多信息融合的时空图卷积交通流量预测模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1541-1550.
[14] 张艳,孙晶雪,孙叶美,刘树东,王传启. 基于分割注意力与线性变换的轻量化目标检测[J]. 浙江大学学报(工学版), 2023, 57(6): 1195-1204.
[15] 韩俊,袁小平,王准,陈烨. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.