电子、通信与自动控制技术 |
|
|
|
|
基于目标检测的焊接电弧形态在线定量检测 |
何卫隆1( ),王平1,2,*( ),张爱华1,2,梁婷婷1,马强杰1 |
1. 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 2. 甘肃省工业过程先进控制重点实验室,甘肃 兰州 730050 |
|
On-line quantitative detection of welding arc shape based on object detection |
Wei-long HE1( ),Ping WANG1,2,*( ),Ai-hua ZHANG1,2,Ting-ting LIANG1,Qiang-jie MA1 |
1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, China |
引用本文:
何卫隆,王平,张爱华,梁婷婷,马强杰. 基于目标检测的焊接电弧形态在线定量检测[J]. 浙江大学学报(工学版), 2023, 57(9): 1903-1914.
Wei-long HE,Ping WANG,Ai-hua ZHANG,Ting-ting LIANG,Qiang-jie MA. On-line quantitative detection of welding arc shape based on object detection. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1903-1914.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.022
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1903
|
1 |
朱志明, 程世佳, 符平坡, 等 焊接电弧行为特征和稳定性评价研究与进展[J]. 焊接, 2018, (11): 1- 6 ZHU Zhi-ming, CHENG Shi-jia, FU Ping-po, et al Research and progress on behavior characteristics and stability evaluation of welding arc[J]. Welding and Joining, 2018, (11): 1- 6
|
2 |
MIAO J, LI Y, DONG Z, et al Research progress of low spatter CO2 welding technology [J]. The International Journal of Advanced Manufacturing Technology, 2022, 123: 3715- 3736
doi: 10.1007/s00170-022-10504-9
|
3 |
陈欢, 朱亮, 姚仁, 等 超窄间隙焊接中送进式焊剂带约束电弧的加热特性[J]. 电焊机, 2021, 51 (9): 41- 45 CHEN Huan, ZHU Liang, YAO Ren, et al Heating characteristics of continuous feeding flux strips constrained arc in ultra-narrow gap welding[J]. Electric Welding Machine, 2021, 51 (9): 41- 45
|
4 |
朱亮, 张旭磊, 郑韶先, 等 焊剂带约束电弧超窄间隙焊接的实现[J]. 兰州理工大学学报, 2007, 33 (3): 27- 30 ZHU Liang, ZHANG Xu-lei, ZHENG Shao-xian, et al Realization of ultra-narrow gap welding with flux strips constraining arc[J]. Journal of Lanzhou University of Technology, 2007, 33 (3): 27- 30
|
5 |
龚练, 朱亮, 张爱华 超窄间隙焊接中焊剂片与电弧相 互作用机制分析[J]. 焊接学报, 2017, 38 (12): 57- 60 GONG Lian, ZHU Liang, ZHANG Ai-hua, et al Interaction mechanism of flux band and arc in ultra-narrow gap welding[J]. Transactions of the China Welding Institution, 2017, 38 (12): 57- 60
|
6 |
任乐, 张爱华, 常东东 基于电弧声的超窄间隙焊接熔合状态识别[J]. 电焊机, 2021, 51 (7): 11- 16 REN Le, ZHANG Ai-hua, CHANG Dong-dong, et al Fusion state recognition of ultra-narrow gap welding based on arc sound[J]. Electric Welding Machine, 2021, 51 (7): 11- 16
|
7 |
YE D, HUA X, ZHANG J, et al Analysis of arc interference and welding stability in twin wire GMA welding[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81: 627- 633
doi: 10.1007/s00170-015-7225-9
|
8 |
ZHU Y, WANG Z, LIU R, et al Study on arc behavior and droplet transfer in twin-electrode TIG-MIG indirect arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 6821- 6831
doi: 10.1007/s00170-022-09131-1
|
9 |
LI W, JI Y, WU J, et al A modified welding image feature extraction algorithm for rotating arc narrow gap MAG welding[J]. Industrial Robot, 2015, 42 (3): 222- 227
doi: 10.1108/IR-11-2014-0407
|
10 |
王聪, 马国红, 姜芙蓉, 等 基于数字形态学的DE-GMAW电弧图像处理[J]. 热加工工艺, 2012, 41 (19): 145- 147 WANG Cong, MA Guo-hong, JIANG Fu-rong, et al DE-GMAW arc image processing based on mathematical morphology[J]. Hot Working Technology, 2012, 41 (19): 145- 147
|
11 |
JAMROZIK W, GÓRKA J Assessing MMA welding process stability using machine vision-based arc features tracking system[J]. Sensors, 2021, 21 (1): 84
|
12 |
程世佳, 朱志明, 符平坡 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报: 自然科学版, 2021, 61 (9): 994- 1001 CHENG Shi-jia, ZHU Zhi-ming, FU Ping-po Arc shape variations and characteristic temperatures of pulsed TIG welding arcs based on observed arc images[J]. Journal of Tsinghua University: Science and Technology, 2021, 61 (9): 994- 1001
|
13 |
ZHU C, TANG X, HE Y, et al Study on arc characteristics and their influences on weld bead geometry in narrow gap GMAW of 5083 Al-alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90: 2513- 2525
doi: 10.1007/s00170-016-9563-7
|
14 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
15 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// Proceedings of European Conference on Computer Vision. Amsterdam: Springer, 2016: 21–37.
|
16 |
REDMON J, DIVVAL S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
17 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
|
18 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-01-20)[2022-08-12]. https://arxiv.org/pdf/1804.02767v1.pdf.
|
19 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2022-08-12] https://arxiv.org/pdf/2004.10934.pdf.
|
20 |
郝琨, 王阔, 王贝贝 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (8): 1622- 1632 HAO Kun, WANG Kuo, WANG Bei-bei Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (8): 1622- 1632
|
21 |
董红召, 方浩杰, 张楠 旋转框定位的多尺度再生物品目标检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (1): 16- 25 DONG Hong-zhao, FANG Hao-jie, ZHANG Nan Multi-scale object detection algorithm for recycled objects based on rotating block positioning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 16- 25
|
22 |
ZHANG Y F, REN W, ZHANG Z, et al Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146- 157
doi: 10.1016/j.neucom.2022.07.042
|
23 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
|
24 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 390-391.
|
25 |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet V2: practical guidelines for efficient CNN architecture design [C]// Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2018: 122-138.
|
26 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 12993-13000.
|
27 |
尹英杰, 徐德, 张正涛 等 基于单目视觉的平面测量[J]. 电子测量与仪器学报, 2013, 27 (4): 347- 352 YIN Ying-jie, XU De, ZHANG Zheng-tao, et al Plane measurement based on monocular vision[J]. Journal of Electronic Measurement and Instrument, 2013, 27 (4): 347- 352
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|