计算机技术 |
|
|
|
|
轻量化YOLOv5s网络车底危险物识别算法 |
金鑫( ),庄建军*( ),徐子恒 |
南京信息工程大学 电子与信息工程学院,江苏 南京 210044 |
|
Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles |
Xin JIN( ),Jian-jun ZHUANG*( ),Zi-heng XU |
School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
1 |
张辉, 李树君, 王伟平, 等 视频车底安检系统的开发[J]. 工业仪表与自动化装置, 2010, (2): 27- 29 ZHANG Hui, LI Shu-jun, Wang Wei-ping, et al Development of under vehicle surveillance system[J]. Industrial Instrumentation and Automation, 2010, (2): 27- 29
doi: 10.3969/j.issn.1000-0682.2010.02.007
|
2 |
徐常星, 郭守学 智能视觉车底安检便携移动平台[J]. 中国安全防范技术与应用, 2018, (6): 6- 10 XU Chang-xing, GUO Shou-xue Intelligent vision under car security portable mobile platform[J]. China Security Protection Technology and Application, 2018, (6): 6- 10
|
3 |
许金金, 王敏, 吴伟交 基于红外图像的车底藏人检测系统设计[J]. 计算机工程与应用, 2013, 49 (3): 69- 73 XU Jin-jin, WANG Min, WU Wei-jiao Infrared image-based system for detecting hiding personnel under vehicle[J]. Computer Engineering and Applications, 2013, 49 (3): 69- 73
doi: 10.3778/j.issn.1002-8331.1206-0027
|
4 |
徐哲伟, 刘昭, 包建东, 等 基于改进YoloX-s的密贴检查器故障检测方法[J]. 电子测量技术, 2022, 45 (12): 91- 99 XU Zhe-wei, LIU Zhao, BAO Jian-dong, et al A fault detection method of closure detectors based on the improved YoloX-s[J]. Electronic Measurement Technology, 2022, 45 (12): 91- 99
|
5 |
高春艳, 赵文辉, 张明路, 等 一种基于YOLOv3的汽车底部危险目标检测算法[J]. 天津大学学报: 自然科学与工程技术版, 2020, 53 (4): 358- 365 GAO Chun-yan, ZHAO Wen-hui, ZHANG Ming-lu, et al A vehicle bottom dangerous object detection algorithm based on YOLOv3[J]. Journal of Tianjin University: Science and Technology, 2020, 53 (4): 358- 365
|
6 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2018-04-08]. https://arxiv.org/abs/1804.02767.
|
7 |
黄锦波. 基于AutoStitch的无人机航拍图像拼接技术研究[D]. 西安: 西安电子科技大学, 2020. HUANG Jin-bo. Research on UAV aerial image stitching based on AutoStitch [D]. Xi'an: Xidian University, 2020.
|
8 |
ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2021-02-10]. https://doi.org/10.48550/arXiv.1710.09412.
|
9 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]// AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12993-13000.
|
10 |
GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression [EB/OL]. [2022-05-25]. https://arxiv.org/abs/2205.12740.
|
11 |
ULTRALYTICS. YOLOv5[EB/OL]. [2021-4-15]. https://github. com/ultralytics/yolov5.
|
12 |
王一, 龚肖杰, 程佳, 等 基于改进YOLOv5的金属工件表面缺陷检测[J]. 包装工程, 2022, 43 (15): 54- 60 WANG Yi, GONG Xiao-jie, CHENG Jia, et al Surface defect detection of metal workpiece based on improved YOLOv5[J]. Packaging Engineering, 2022, 43 (15): 54- 60
|
13 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2117-2125.
|
14 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 8759-8768.
|
15 |
李小波, 李阳贵, 郭宁, 等 融合注意力机制的 YOLOv5 口罩检测算法[J]. 图学学报, 2023, 44 (1): 16- 25 LI Xiao-bo , LI Yang-gui, GUO Ning, et al Mask detection algorithm based on YOLOv5 integrating attention mechanism[J]. Journal of Graphics, 2023, 44 (1): 16- 25
|
16 |
彭继慎, 孙礼鑫, 王凯, 等 基于模型压缩的ED-YOLO电力巡检无人机避障目标检测算法[J]. 仪器仪表学报, 2021, 42 (10): 161- 170 PENG Ji-shen, SUN Li-xin, WANG Kai, et al ED-YOLO power inspection UAV obstacle avoidance target detection algorithm based on model compression[J]. Chinese Journal of Scientific Instrument, 2021, 42 (10): 161- 170
|
17 |
MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design [C]// European Conference on Computer Vision. Salt Lake City: CVPR, 2018.
|
18 |
史梦圆, 高俊钗 改进YOLOv5的建筑物破损检测算法研究[J]. 国外电子测量技术, 2022, 41 (8): 84- 90 SHI Meng-yuan, GAO Jun-chai Research on improved YOLO v5 building damage detection algorithm[J]. Foreign Electronic Measurement Technology, 2022, 41 (8): 84- 90
|
19 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020.
|
20 |
ZHOU D, FANG J, SONG X, et al. IoU loss for 2D/3D object detection [C]// 2019 International Conference on 3D Vision (3DV). Quebec City: IEEE, 2019: 85-94.
|
21 |
刘洪江, 曹玉香, 李佳, 等 基于Opencv图像处理的无人机影像拼接技术研究[J]. 城市勘测, 2021, (2): 83- 86 LIU Hong-jiang, CAO Yu-xiang, LI Jia, et al Research on UAV image Mosaic technology based on Opencv image processing[J]. Urban Geotechnical Investigation and Surveying, 2021, (2): 83- 86
|
22 |
徐印赟, 江明, 李云飞, 等. 基于改进YOLO及NMS的水果目标检测[J]. 电子测量与仪器学报, 2022, 36(4): 114-123. XU Yin-yun, JIANG Ming, LI Yun-fei, et al. Fruit target detection based on improved YOLO and NMS [J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(4): 114-123.
|
23 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39(6): 1137-1149.
|
24 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2020-04-23]. https://arxiv.org/abs/2004.10934.
|
25 |
GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[EB/OL]. [2021-07-18]. https://arxiv.org/abs/2107.08430.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|