计算机技术、信息工程 |
|
|
|
|
基于生成对抗网络的太阳能电池缺陷增强方法 |
刘坤1( ),文熙1,黄闽茗2,杨欣欣1,毛经坤3 |
1. 河北工业大学 人工智能与数据科学学院,天津 300131 2. 贵州大学 大数据与信息工程学院,贵州 贵阳 550025 3. 天津芯思科技有限公司,天津 300450 |
|
Solar cell defect enhancement method based on generative adversarial network |
Kun LIU1( ),Xi WEN1,Min-ming HUANG2,Xin-xin YANG1,Jing-kun MAO3 |
1. College of Artificial Intelligence, Hebei University of Technology, Tianjin 300131, China 2. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China 3. Tianjin Xinsi Technology Company with Limited Liability, Tianjin 300450, China |
引用本文:
刘坤,文熙,黄闽茗,杨欣欣,毛经坤. 基于生成对抗网络的太阳能电池缺陷增强方法[J]. 浙江大学学报(工学版), 2020, 54(4): 684-693.
Kun LIU,Xi WEN,Min-ming HUANG,Xin-xin YANG,Jing-kun MAO. Solar cell defect enhancement method based on generative adversarial network. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 684-693.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.007
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I4/684
|
1 |
TSAI D M, LI G N, LI W C, et al Defect detection in multi-crystal solar cells using clustering with uniformity measures[J]. Advanced Engineering Informatics, 2015, 29 (3): 419- 430
doi: 10.1016/j.aei.2015.01.014
|
2 |
林剑春, 杨爱军, 沈熠辉 电致发光缺陷检测仪的成像性能评估[J]. 光学 精密工程, 2017, 25 (6): 1418- 1424 LIN Jian-chun, YANG Ai-jun, SHEN Yi-hui Evaluation of imaging performance for electroluminescence defect detector[J]. Optics and Precision Engineering, 2017, 25 (6): 1418- 1424
doi: 10.3788/OPE.20172506.1418
|
3 |
TSAI D M, LIN M C Machine-vision-based identify-cation for wafer tracking in solar cell manufacturing[J]. Robotics and Computer Integrated Manufacturing, 2013, 29 (5): 312- 321
doi: 10.1016/j.rcim.2013.01.009
|
4 |
夏英, 李刘杰, 张旭, 等 基于层次聚类的不平衡数据加权过采样方法[J]. 计算机科学, 2019, 46 (4): 28- 33 XIA Ying, LI Liu-jie, ZHANG Xu, et al Weighted oversampling method based on hierarchical clustering for unbalanced data[J]. Computer Science, 2019, 46 (4): 28- 33
|
5 |
王宪保, 李洁, 姚明海, 等 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能, 2014, 27 (6): 517- 523 WANG Xian-bao, LI Jie, YAO Ming-hai, et al Solar cells surface defects detection based on deep learning[J]. Pattern Recognition and Artificial Intelligence, 2014, 27 (6): 517- 523
|
6 |
SHI J J, PING W, PEI Y J, et al. Research on data augmentation for image classification based on convolution neural networks [C] // 2017 Chinese Automation Congress. Beijing: IEEE, 2017: 4165- 4170.
|
7 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C] // Advances in Neural Information Processing Systems. Montréal: MIT Press, 2014: 2672-2680.
|
8 |
SANDFORT V, YAN K, PICKHARDT P J, et al Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks[J]. Scientific Reports, 2019, 9 (1): 1- 9
doi: 10.1038/s41598-018-37186-2
|
9 |
ZHONG Z, ZHENG L, ZHENG Z, et al. Camera style adaptation for person re-identification [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 5157-5166.
|
10 |
LIU L, PAN Z, QIU X, et al. SAR target classification with cycle-gan transferred simulated samples [C] // 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 4411-4414.
|
11 |
LI Z, WANG Y, YU J. Reconstruction of thin-slice medical images using generative adversarial network [C] // International Workshop on Machine Learning in Medical Imaging. Berlin: Springer, 2017: 325-333.
|
12 |
GUAN J, LI R, YU S, et al. Generation of synthetic electronic medical record text [C] // 2018 IEEE International Conference on Bioinformatics and Biomedicine. Madrid: IEEE, 2018: 374-380.
|
13 |
WANG Q, ZHOU X, WANG C, et al WGAN-based synthetic minority over-sampling technique: improving semantic fine-grained classification for lung nodules in CT images[J]. IEEE Access, 2019, 7 (1): 18450- 18463
|
14 |
HAN C, HAYASHI H, RUNDO L, et al. GAN-based synthetic brain MR image generation [C] // 2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 734-738.
|
15 |
REZAEI M, YANG H, HARMUTH K, et al. Conditional generative adversarial refinement networks for unbalanced medical image semantic segmentation [C] // 2019 IEEE Winter Conference on Applications of Computer Vision. Washington: IEEE, 2019: 1836-1845.
|
16 |
FANG W, ZHANG F, SHENG V S, et al A method for improving CNN-based image recognition using DCGAN[J]. Computers Materials and Continua, 2018, 57 (1): 167- 178
|
17 |
LIN T, HU Z, GUO X. Sparsemax and relaxed wasserstein for topic sparsity [C] // Proceedings of the 12th ACM International Conference on Web Search and Data Mining. Melbourne: ACM, 2019: 141-149.
|
18 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C] // Proceedings of the 34th International Conference on Machine Learning. Sydney: ACM, 2017: 214-223.
|
19 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs [C] // Advances in Neural Information Processing Systems. Long Beach: MIT Press, 2017: 5767-5777.
|
20 |
SEWARD C, UNTERTHINER T, BERGMANN U, et al First order generative adversarial networks[J]. Proceedings of the 35th International Conference on Machine Learning, 2018, 80 (1): 4567- 4576
|
21 |
SHMELKOV K, SCHMID C, ALAHARI K. How good is my GAN [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 213-229.
|
22 |
SU B Y, CHEN H Y, ZHU Y, et al Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (12): 4675- 4688
doi: 10.1109/TIM.2019.2900961
|
23 |
WANG H Y, ZHANG J W, TIAN Y, et al A simple guidance template-based defect detection method for strip steel surfaces[J]. IEEE Transactions on Industrial Informatics, 2018, 15 (5): 2798- 2809
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|