计算机技术 |
|
|
|
|
基于改进YOLOv7的复杂环境下苹果目标检测 |
莫恒辉( ),魏霖静*( ) |
甘肃农业大学 信息科学技术学院,甘肃 兰州 730070 |
|
Improved YOLOv7 based apple target detection in complex environment |
Henghui MO( ),linjing WEI*( ) |
College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China |
1 |
霍学喜, 刘天军, 刘军弟, 等 2020年度中国苹果产业发展报告: 精简版[J]. 中国果菜, 2022, 42 (2): 1- 6 HUO Xuexi, LIU Tianjun, LIU Jundi, et al 2020 China apple industry development report: simplified version[J]. Chinese Fruits and Vegetables, 2022, 42 (2): 1- 6
|
2 |
《中国果业信息》编辑部 2021年全国各省(区, 市)主要水果产量分布及变化[J]. 中国果业信息, 2023, 38 (11): 39 Editorial Board of China Fruit Industry Information Distribution and change of major fruit production in provinces (autonomous regions and municipalities) of China in 2021[J]. China Fruit Industry Information, 2023, 38 (11): 39
|
3 |
门小鹏, 许雪峰, 王玉斌, 等 我国苹果生产的现状, 问题与发展对策[J]. 农村实用技术, 2022, (1): 25- 27 MEN Xiaopeng, XU Xuefeng, WANG Yubin, et al Current status, problems and development strategies of apple production in my country[J]. Rural Practical Technology, 2022, (1): 25- 27
|
4 |
赵映, 肖宏儒, 梅松, 等 我国果园机械化生产现状与发展策略[J]. 中国农业大学学报, 2017, 22 (6): 116- 127 ZHAO Ying, XIAO Hongru, MEI Song, et al Current situation and development strategy of mechanized production of orchards in China[J]. Journal of China Agricultural University, 2017, 22 (6): 116- 127
|
5 |
卢蒙蒙, 江珊, 张国浩, 等 苹果化学疏花疏果技术研究进展[J]. 中国果树, 2021, 210 (4): 4- 7 LU Mengmeng, JIANG Shan, ZHANG Guohao, et al Research progress on chemical flower and fruit thinning technology of apples[J]. Chinese Fruit Tree, 2021, 210 (4): 4- 7
|
6 |
李成鹏, 尚书旗, 王东伟, 等 振动式高酸苹果采摘机的设计与试验[J]. 农机化研究, 2024, 46 (4): 106- 113 LI Chengpeng, SHANG Shuqi, WANG Dongwei, et al Design and test of vibrating high-acid apple picking machine[J]. Agricultural Mechanization Research, 2024, 46 (4): 106- 113
|
7 |
BU L, HU G, CHEN C, et al Experimental and simulation analysis of optimum picking patterns for robotic apple harvesting[J]. Scientia Horticulturae, 2020, 261: 108937
doi: 10.1016/j.scienta.2019.108937
|
8 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 770−778.
|
9 |
LI J, LIANG X, SHEN S M, et al Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multimedia, 2017, 20 (4): 985- 996
|
10 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (6): 1137- 1149
|
11 |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector [C]/ / Computer Vision-ECCV . Amsterdam: Springer, 2016: 21−37.
|
12 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779−788.
|
13 |
GAO F, FU L, ZHANG X, et al Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN[J]. Computers and Electronics in Agriculture, 2020, 176: 105634
doi: 10.1016/j.compag.2020.105634
|
14 |
FU L, FENG Y, MAJEED Y, et al Kiwifruit detection in field images using Faster R-CNN with ZFNet[J]. IFAC-PapersOnLine, 2018, 51 (17): 45- 50
doi: 10.1016/j.ifacol.2018.08.059
|
15 |
张恩宇, 成云玲, 胡广锐, 等 基于SSD算法的自然条件下青苹果识别[J]. 中国科技论文, 2020, 15 (3): 274- 281 ZHANG Enyu, CHENG Yunling, HU Guangrui, et al Green apple recognition under natural conditions based on SSD algorithm[J]. Chinese Science and Technology Papers, 2020, 15 (3): 274- 281
doi: 10.3969/j.issn.2095-2783.2020.03.004
|
16 |
赵辉, 乔艳军, 王红君, 等 基于改进YOLOv3的果园复杂环境下苹果果实识别[J]. 农业工程学报, 2021, 37 (16): 127- 135 ZHAO Hui, QIAO Yanjun, WANG Hongjun, et al Apple fruit recognition in complex environment of orchard based on improved YOLOv3[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (16): 127- 135
|
17 |
LYU S, LI R, ZHAO Y, et al Green citrus detection and counting in orchards based on YOLOv5-CS and AI edge system[J]. Sensors, 2022, 22 (2): 576
doi: 10.3390/s22020576
|
18 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Phuket: IEEE, 2023: 7464−7475.
|
19 |
ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 6688−6697.
|
20 |
HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 1−10.
|
21 |
CHENG S, ZHU Y, WU S Deep learning based efficient ship detection from drone-captured images for maritime surveillance[J]. Ocean Engineering, 2023, 285: 115440
doi: 10.1016/j.oceaneng.2023.115440
|
22 |
高敏, 李玲, 张辉, 等 复杂环境下煤矿井下胶带运输异物在线检测算法优化与分析[J]. 煤炭工程, 2024, 56 (6): 174- 180 GAO Min, LI Ling, ZHANG Hui, et al Optimization and analysis of online detection algorithm for foreign objects in underground coal mine tape transportation under complex environment[J]. Coal Engineering, 2024, 56 (6): 174- 180
|
23 |
MA N, ZHANG X, LIU M, et al. Activate or not: learning customized activation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 8032−8042.
|
24 |
PISANO E, ZONG S, HEMMINGER B, et al Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms[J]. Journal of Digital Imaging, 1998, 11 (4): 1- 9
|
25 |
KINGA D, ADAM J B. A method for stochastic optimization [C]// International Conference on Learning Representations . San Diego: ICLR, 2015, 5: 6.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|