Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1738-1747    DOI: 10.3785/j.issn.1008-973X.2024.08.020
计算机技术、控制工程     
时间感知组合的动态知识图谱补全
李忠良1,2(),陈麒1,2,石琳1,2,*(),杨朝1,2,邹先明1,2
1. 华北理工大学 人工智能学院,河北 唐山 063210
2. 河北省工业智能感知重点实验室,河北 唐山 063210
Dynamic knowledge graph completion of temporal aware combination
Zhongliang LI1,2(),Qi CHEN1,2,Lin SHI1,2,*(),Chao YANG1,2,Xianming ZOU1,2
1. College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China
2. Hebei Key Laboratory of Industrial Intelligent Perception, Tangshan 063210, China
 全文: PDF(970 KB)   HTML
摘要:

针对现有时序知识图谱嵌入方法仅考虑时序信息的关系或仅编码独立的时序向量,知识图谱补全性能不高的问题,提出时间感知组合(TAC)的时序知识图谱补全方法. 通过建模维度特征,分析时序信息对知识图谱补全方法的有效程度. 通过时序信息内嵌和独立相结合的嵌入方式,考虑时序信息嵌入后,不同学习方式对表示学习能力产生不同的影响. 提出的方法利用长短时记忆(LSTM)网络编码时序信息,学习到更准确的时间维度特征,有助于提升时序图谱的性能. 在ICEWS14、ICEWS05-15和GDELT数据集上进行实验,验证了时间感知组合方法的有效性. 对比相关的研究性能指标可知,本文方法在链接预测上表现较优.

关键词: 时序知识图谱注意力机制长短时记忆(LSTM)时序嵌入    
Abstract:

A time-aware combination (TAC) method for temporal knowledge graph completion was proposed aiming at the problem that the existing temporal knowledge graph embedding methods only consider the relationship of temporal information or encode independent temporal vectors and the completion performance of these methods is not high enough. The effectiveness of temporal information on knowledge graph completion methods was analyzed by modeling dimensional features. Different learning methods have different effects on the representation learning ability after considering the embedding of temporal information through the embedding method of combining the embedded and independent temporal information. Long short-term memory (LSTM) network was utilized to encode temporal information, learn more accurate temporal dimension features and help to improve the performance of temporal graph. Experiments on ICEWS14, ICEWS05-15 and GDELT datasets verified the effectiveness of the time-aware combination method. The related research performance metrics were compared. Results show that the proposed method performs better in link prediction.

Key words: temporal knowledge graph    attention mechanism    long short-term memory (LSTM)    temporal embedding
收稿日期: 2023-07-10 出版日期: 2024-07-23
CLC:  TP 391  
通讯作者: 石琳     E-mail: bbzqlzl@163.com;shilin@ncst.edu.cn
作者简介: 李忠良(1994—),男,硕士生,从事知识图谱嵌入的研究. orcid.org/0009-0001-2675-1043. E-mail:bbzqlzl@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李忠良
陈麒
石琳
杨朝
邹先明

引用本文:

李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.

Zhongliang LI,Qi CHEN,Lin SHI,Chao YANG,Xianming ZOU. Dynamic knowledge graph completion of temporal aware combination. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1738-1747.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1738

补全方法适用知识库建模维度时间特征时间维度融合相似性评价函数
TransE三元组s,r,o××$ f\left( {s,r,o} \right) = \left\| {{{\boldsymbol{e}}_s}+{{\boldsymbol{e}}_r} - {{\boldsymbol{e}}_o}} \right\| $
DistMult三元组s,r,o××$ f\left( {s,r,o} \right) = \left\langle {{{\boldsymbol{e}}_s},{{\boldsymbol{e}}_r},{{\boldsymbol{e}}_o}} \right\rangle $
ComplEx三元组s,r,o××$ f\left( {s,r,o} \right) = {{\mathrm{Re}}} \left( {\langle {{\boldsymbol{e}}_s},{{\boldsymbol{w}}_r},{{\boldsymbol{e}}_o}\rangle } \right) $
ConvE三元组s,r,o××$ f\left( {s,r,o} \right) = f({\mathrm{vec}}(f([{{\boldsymbol{\bar e}}_s};{{\boldsymbol{\bar r}}_r}] * {\boldsymbol{\varOmega}})){{\boldsymbol{W}}}){{\boldsymbol{e}}_o} $
ConvKB三元组s,r,o××$ f\left( {s,r,o} \right) = {\text{concat}}(f([{{\boldsymbol{e}}_s},{{\boldsymbol{e}}_r},{{\boldsymbol{e}}_o}] * {\boldsymbol{\varOmega}} )) \cdot {\boldsymbol{w}} $
HyTE四元组s,r,o$ f\left( {s,r,o,t} \right) = \left\| {{P_t}({{\boldsymbol{e}}_s})+{P_t}({{\boldsymbol{e}}_r}) - {P_t}({{\boldsymbol{e}}_o})} \right\| $
TA-TransE四元组s,r,o$ f\left( {s,r,o,t} \right) = \left\| {{{\boldsymbol{e}}_s}+{{\boldsymbol{e}}_{{r_{{\mathrm{seq}}}}}} - {{\boldsymbol{e}}_o}} \right\| $
TA-DistMult四元组s,r,o$ f\left( {s,r,o,t} \right) = ({{\boldsymbol{e}}_s} \circ {{\boldsymbol{e}}_o}){{\boldsymbol{e}}_{{r_{{\mathrm{seq}}}}}}^{\text{T}} $
ST-ConvKB四元组s,r,o$ f\left( {s,r,o,t} \right) = {\text{concat}}(f([{{\boldsymbol{e}}_{{s_t}}},{{\boldsymbol{e}}_r},{{\boldsymbol{e}}_{{o_t}}}] * {\boldsymbol{\varOmega}} )) \cdot {\boldsymbol{w}} $
TTransE四元组s,r,o,t×$ f\left( {s,r,o,t} \right) = \left\| {{{\boldsymbol{e}}_s}+{{\boldsymbol{e}}_r}+{{\boldsymbol{e}}_t} - {{\boldsymbol{e}}_o}} \right\| $
TComplEx四元组s,r,o,t×$ f\left( {s,r,o,t} \right) = {{\mathrm{Re}}} (\langle {{\boldsymbol{e}}_s},{{\boldsymbol{w}}_r},{{\boldsymbol{e}}_o},{{\boldsymbol{w}}_t}\rangle ) $
RE-GCN[27]四元组s,r,o$ \vec p(o|s,r,{{\boldsymbol{H}}_t},{R_t}) = \sigma ({{\boldsymbol{H}}_t}{\text{ConvTransE}}({{\boldsymbol{e}}_{{s_t}}},{{\boldsymbol{e}}_{{r_t}}})) $
ATiSE四元组s,r,o$ f\left( {s,r,o,t} \right) = {D_{{\mathrm{KL}}}}({{\boldsymbol{P}}_{r,t}},{{\boldsymbol{P}}_{e,t}}) $
TeRo四元组s,r,o$ f\left( {s,r,o,t} \right) = ||{{\boldsymbol{e}}_{{s_t}}}+{{\boldsymbol{e}}_r} - \overline {{{\boldsymbol{e}}_{ot}}} || $
表 1  用于知识图谱的补全方法对比
日期映射标记
Year0y:01y:12y:23y:34y:45y:56y:67y:78y:89y:9
Month0m:101m:112m:123m:134m:145m:156m:167m:178m:189m:19
Day0d:201d:212d:223d:234d:245d:256d:267d:278d:289d:29
表 2  时间序列标记
图 1  时间感知组合的嵌入方式
数据集实体集关系数训练集验证集测试集时间戳时间粒度
ICEWS147 12823072 8268 9418 963365day
ICEWS05-1510 488251368 96246 27546 0924 017day
ICEWS11-146 738235118 76614 85914 7561 461day
GDELT500202 735 685341 961341 961366day
表 3  数据集的信息统计
模型ICEWS14ICEWS05-15GDELT
MRRH@1H@3H@10MRRH@1H@3H@10MRRH@1H@3H@10
TransE[33]28.09.463.729.49.066.311.30.015.831.2
DistMult[33]43.932.367.245.633.769.119.611.720.834.8
SimplE[33]45.834.151.668.747.835.953.970.820.612.422.036.6
TTransE[33]25.57.460.127.18.461.611.50.016.031.8
HyTE[33]29.710.841.665.531.611.644.568.111.80.016.532.6
TA-DistMult[33]47.736.368.647.434.672.820.612.421.936.5
DE-TransE[33]32.612.446.768.631.410.845.368.512.60.018.135.0
DE-DistMult[33]50.139.256.970.848.436.654.671.821.313.022.837.6
DE-SimplE[33]52.641.859.272.551.339.257.874.823.014.124.840.3
ATiSE[34]55.043.662.975.051.937.860.679.4
TeRo[34]56.246.862.173.258.646.966.879.5
RE-Net[27]
36.326.741.054.236.726.141.656.819.411.920.533.7
RE-GCN[27]
37.427.441.757.038.027.043.358.919.011.820.333.0
rGalT[27]38.328.642.958.138.927.644.158.119.612.120.934.1
TNTComplEx[37]
56.046.061.074.060.050.065.078.022.414.423.938.1
TuckERT[37]59.451.864.073.162.755.067.476.941.131.045.361.4
TuckERTNT[37]60.452.165.575.363.855.968.678.338.128.341.857.6
TAC-TransE23.315.238.062.726.317.542.066.49.83.712.028.3
TAC-DistMult58.747.865.678.358.746.565.678.225.817.429.745.2
TAC-SimplE62.548.874.189.464.552.876.992.252.535.763.379.8
表 4  不同嵌入方法在ICEWS14、ICEWS05-15和GDELT的链接预测结果
时序嵌入方法ICEWS14ICEWS11-14
MRRH@1H@3H@10MRRH@1H@3H@10
T55.343.762.776.560.251.365.275.5
DE53.942.561.274.654.242.361.067.8
UTEE53.742.560.874.856.145.262.976.4
HyTE52.341.958.971.454.943.161.777.4
ATiSE46.634.753.469.749.337.556.172.2
TA37.125.342.261.433.424.037.651.2
TAC62.548.865.678.364.748.777.491.2
表 5  不同嵌入方法在ICEWS14和ICEWS11-14数据集上的实验结果对比
时序嵌入方法ICEWS14
MRRH@1H@3H@10
t-TransE23.69.729.352.8
TA-TransE27.939.950.670.2
TAC-TransE23.315.238.062.7
T-DistMult43.231.748.466.3
TA-DistMult53.641.861.076.0
TAC-DistMult
58.747.865.678.3
T-SimplE31.418.534.455.5
TA-SimplE20.513.422.632.6
TAC-SimplE62.548.874.189.4
表 6  不同时序嵌入方法在ICEWS14数据集上的实验结果
图 2  嵌入维数的消融对比
1 LI Z, GUAN S, JIN X, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) . Dublin: ACL, 2022: 290-296.
2 CHEN Z, ZHAO X, LIAO J, et al Temporal knowledge graph question answering via subgraph reasoning[J]. Knowledge-Based Systems, 2022, 251: 109134
doi: 10.1016/j.knosys.2022.109134
3 LONG J, CHEN Z, HE W, et al An integrated framework of deep learning and knowledge graph for prediction of stock price trend: an application in Chinese stock exchange market[J]. Applied Soft Computing, 2020, 91: 106205
doi: 10.1016/j.asoc.2020.106205
4 GARCIA-DURAN A, DUMANČIĆ S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Brussel: ACL, 2018: 4816-4821.
5 LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph [C]// Companion Proceedings of the Web Conference . Lyon: ACM, 2018: 1771-1776.
6 LEETARU K, SCHRODT P A. Gdelt: global data on events, location, and tone, 1979–2012 [C]// ISA Annual Convention . San Francisco: Citeseer, 2013: 1-49.
7 KIM H A, D’ORAZIO V, BRANDT P T, et al UTDEventData: an r package to access political event data[J]. Journal of Open Source Software, 2019, 4 (36): 1322
doi: 10.21105/joss.01322
8 WANG Q, MAO Z, WANG B, et al Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (12): 2724- 2743
doi: 10.1109/TKDE.2017.2754499
9 BORDES A, USUNIER N, GARCIA-DURAN A, et al Translating embeddings for modeling multi-relational data[J]. Advances in Neural Information Processing Systems, 2013, 26: 2787- 2795
10 WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Québec: AAAI, 2014: 752-786.
11 LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the AAAI conference on Artificial Intelligence . Texas: AAAI, 2015: 762-816.
12 TROUILLON T, DANCE C R, GAUSSIER É, et al Knowledge graph completion via complex tensor factorization[J]. The Journal of Machine Learning Research, 2017, 18 (1): 4735- 4772
13 NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on International Conference on Machine Learning . [S. l. ]: IEEE, 2011: 809-816.
14 YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases [C]// Proceedings of the International Conference on Learning Representations . San Diego: IEEE, 2015.
15 TROUILLON T, DANCE C R, GAUSSIER É, et al Knowledge graph completion via complex tensor factorization[J]. Journal of Machine Learning Research, 2017, 18 (130): 1- 38
16 DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New Orleans: AAAI, 2018: 612-618.
17 NGUYEN T D, NGUYEN D Q, PHUNG D, et al. A novel embedding model for knowledge base completion based on convolutional neural network [C]// Proceedings of NAACL-HLT . New Orleans: ACL, 2018: 327-333.
18 SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// The Semantic Web: 15th International Conference, ESWC 2018. Heraklion: Springer, 2018: 593-607.
19 VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks [C]// International Conference on Learning Representations . New Orleans: IEEE, 2019.
20 JIANG T, LIU T, GE T, et al. Encoding temporal information for time-aware link prediction [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing . Texas: ACL, 2016: 2350-2354.
21 GARCIA-DURAN A, DUMANČIĆ S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Brussels: ACL, 2018: 4816-4821.
22 DASGUPTA S S, RAY S N, TALUKDAR P P. HyTE: hyperplane-based temporally aware knowledge graph embedding [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Brussels: ACL, 2018: 2001-2011.
23 XU C, NAYYERI M, ALKHOURY F, et al. Temporal knowledge graph embedding model based on additive time series decomposition [C]// International Semantic Web Conference . [S. l. ]: IEEE, 2020.
24 LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph [C]// Companion Proceedings of the Web Conference . Lyon: WWW, 2018: 1771-1776.
25 LACROIX T, OBOZINSKI G, USUNIER N. Tensor decompositions for temporal knowledge base completion [C]// International Conference on Learning Representations . New Orleans: IEEE, 2019.
26 李凤英, 范伟豪 基于时序感知LR的动态知识图谱补全方法[J]. 计算机工程与应用, 2022, 58 (15): 202- 209
LI Fengying, FAN Weihao Temporal aware approach for dynamic knowledge graph completion[J]. Computer Engineering and Applications, 2022, 58 (15): 202- 209
doi: 10.3778/j.issn.1002-8331.2112-0057
27 GAO Y, FENG L, KAN Z, et al. Modeling precursors for temporal knowledge graph reasoning via auto-encoder structure [C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence . Vienna: ACM, 2022: 23-29.
28 YU Y, SI X, HU C, et al A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31 (7): 1235- 1270
doi: 10.1162/neco_a_01199
29 HAN Z, ZHANG G, MA Y, et al. Time-dependent entity embedding is not all you need: a re-evaluation of temporal knowledge graph completion models under a unified framework [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing . Punta Cana: ACL, 2021: 8104-8118.
30 DAI Y, WANG S, XIONG N N, et al A survey on knowledge graph embedding: approaches, applications and benchmarks[J]. Electronics, 2020, 9 (5): 750
doi: 10.3390/electronics9050750
31 LEBLAY J, CHEKOL M W, LIU X, et al. Towards temporal knowledge graph embeddings with arbitrary time precision [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. [S. l.]: ACM, 2020: 685-694.
32 KAZEMI S M, POOLE D Simple embedding for link prediction in knowledge graphs[J]. Advances in Neural Information Processing Systems, 2018, 31 (3): 4289- 4300
33 GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI, 2020, 34(4): 3988-3995.
34 XU C, NAYYERI M, ALKHOURY F, et al. TeRo: a time-aware knowledge graph embedding via temporal rotation [C]// Proceedings of the 28th International Conference on Computational Linguistics . Barcelona: ACL, 2020: 1583-1593.
35 JIN W, QU M, JIN X, et al. Recurrent event network: autoregressive structure inference over temporal knowledge graphs [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing . [S. l. ]: ACL, 2020: 6669-6683.
36 LI Z, JIN X, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval . [S. l. ]: ACM, 2021: 408-417.
[1] 李灿林,王新玥,马利庄,邵志文,张文娇. 融合注意力机制和结构线提取的图像卡通化[J]. 浙江大学学报(工学版), 2024, 58(8): 1728-1737.
[2] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[3] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[4] 杨军,张琛. 基于边界点估计与稀疏卷积神经网络的三维点云语义分割[J]. 浙江大学学报(工学版), 2024, 58(6): 1121-1132.
[5] 李运堂,李恒杰,张坤,王斌锐,关山越,陈源. 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报(工学版), 2024, 58(6): 1133-1141.
[6] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[7] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[8] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[9] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[10] 李松,王哲,张丽平. SL-tgStore:新的时序知识图谱存储模型[J]. 浙江大学学报(工学版), 2024, 58(3): 449-458.
[11] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[12] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.
[13] 秦思怡,盖绍彦,达飞鹏. 混合采样下多级特征聚合的视频目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(1): 10-19.
[14] 李海烽,张雪英,段淑斐,贾海蓉,Huizhi Liang . 融合生成对抗网络与时间卷积网络的普通话情感识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1865-1875.
[15] 赵小强,王泽,宋昭漾,蒋红梅. 基于动态注意力网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2023, 57(8): 1487-1494.