计算机技术、控制工程 |
|
|
|
|
时间感知组合的动态知识图谱补全 |
李忠良1,2( ),陈麒1,2,石琳1,2,*( ),杨朝1,2,邹先明1,2 |
1. 华北理工大学 人工智能学院,河北 唐山 063210 2. 河北省工业智能感知重点实验室,河北 唐山 063210 |
|
Dynamic knowledge graph completion of temporal aware combination |
Zhongliang LI1,2( ),Qi CHEN1,2,Lin SHI1,2,*( ),Chao YANG1,2,Xianming ZOU1,2 |
1. College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China 2. Hebei Key Laboratory of Industrial Intelligent Perception, Tangshan 063210, China |
引用本文:
李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.
Zhongliang LI,Qi CHEN,Lin SHI,Chao YANG,Xianming ZOU. Dynamic knowledge graph completion of temporal aware combination. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1738-1747.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.020
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1738
|
1 |
LI Z, GUAN S, JIN X, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) . Dublin: ACL, 2022: 290-296.
|
2 |
CHEN Z, ZHAO X, LIAO J, et al Temporal knowledge graph question answering via subgraph reasoning[J]. Knowledge-Based Systems, 2022, 251: 109134
doi: 10.1016/j.knosys.2022.109134
|
3 |
LONG J, CHEN Z, HE W, et al An integrated framework of deep learning and knowledge graph for prediction of stock price trend: an application in Chinese stock exchange market[J]. Applied Soft Computing, 2020, 91: 106205
doi: 10.1016/j.asoc.2020.106205
|
4 |
GARCIA-DURAN A, DUMANČIĆ S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Brussel: ACL, 2018: 4816-4821.
|
5 |
LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph [C]// Companion Proceedings of the Web Conference . Lyon: ACM, 2018: 1771-1776.
|
6 |
LEETARU K, SCHRODT P A. Gdelt: global data on events, location, and tone, 1979–2012 [C]// ISA Annual Convention . San Francisco: Citeseer, 2013: 1-49.
|
7 |
KIM H A, D’ORAZIO V, BRANDT P T, et al UTDEventData: an r package to access political event data[J]. Journal of Open Source Software, 2019, 4 (36): 1322
doi: 10.21105/joss.01322
|
8 |
WANG Q, MAO Z, WANG B, et al Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (12): 2724- 2743
doi: 10.1109/TKDE.2017.2754499
|
9 |
BORDES A, USUNIER N, GARCIA-DURAN A, et al Translating embeddings for modeling multi-relational data[J]. Advances in Neural Information Processing Systems, 2013, 26: 2787- 2795
|
10 |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Québec: AAAI, 2014: 752-786.
|
11 |
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the AAAI conference on Artificial Intelligence . Texas: AAAI, 2015: 762-816.
|
12 |
TROUILLON T, DANCE C R, GAUSSIER É, et al Knowledge graph completion via complex tensor factorization[J]. The Journal of Machine Learning Research, 2017, 18 (1): 4735- 4772
|
13 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on International Conference on Machine Learning . [S. l. ]: IEEE, 2011: 809-816.
|
14 |
YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases [C]// Proceedings of the International Conference on Learning Representations . San Diego: IEEE, 2015.
|
15 |
TROUILLON T, DANCE C R, GAUSSIER É, et al Knowledge graph completion via complex tensor factorization[J]. Journal of Machine Learning Research, 2017, 18 (130): 1- 38
|
16 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New Orleans: AAAI, 2018: 612-618.
|
17 |
NGUYEN T D, NGUYEN D Q, PHUNG D, et al. A novel embedding model for knowledge base completion based on convolutional neural network [C]// Proceedings of NAACL-HLT . New Orleans: ACL, 2018: 327-333.
|
18 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// The Semantic Web: 15th International Conference, ESWC 2018. Heraklion: Springer, 2018: 593-607.
|
19 |
VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks [C]// International Conference on Learning Representations . New Orleans: IEEE, 2019.
|
20 |
JIANG T, LIU T, GE T, et al. Encoding temporal information for time-aware link prediction [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing . Texas: ACL, 2016: 2350-2354.
|
21 |
GARCIA-DURAN A, DUMANČIĆ S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Brussels: ACL, 2018: 4816-4821.
|
22 |
DASGUPTA S S, RAY S N, TALUKDAR P P. HyTE: hyperplane-based temporally aware knowledge graph embedding [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Brussels: ACL, 2018: 2001-2011.
|
23 |
XU C, NAYYERI M, ALKHOURY F, et al. Temporal knowledge graph embedding model based on additive time series decomposition [C]// International Semantic Web Conference . [S. l. ]: IEEE, 2020.
|
24 |
LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph [C]// Companion Proceedings of the Web Conference . Lyon: WWW, 2018: 1771-1776.
|
25 |
LACROIX T, OBOZINSKI G, USUNIER N. Tensor decompositions for temporal knowledge base completion [C]// International Conference on Learning Representations . New Orleans: IEEE, 2019.
|
26 |
李凤英, 范伟豪 基于时序感知LR的动态知识图谱补全方法[J]. 计算机工程与应用, 2022, 58 (15): 202- 209 LI Fengying, FAN Weihao Temporal aware approach for dynamic knowledge graph completion[J]. Computer Engineering and Applications, 2022, 58 (15): 202- 209
doi: 10.3778/j.issn.1002-8331.2112-0057
|
27 |
GAO Y, FENG L, KAN Z, et al. Modeling precursors for temporal knowledge graph reasoning via auto-encoder structure [C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence . Vienna: ACM, 2022: 23-29.
|
28 |
YU Y, SI X, HU C, et al A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31 (7): 1235- 1270
doi: 10.1162/neco_a_01199
|
29 |
HAN Z, ZHANG G, MA Y, et al. Time-dependent entity embedding is not all you need: a re-evaluation of temporal knowledge graph completion models under a unified framework [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing . Punta Cana: ACL, 2021: 8104-8118.
|
30 |
DAI Y, WANG S, XIONG N N, et al A survey on knowledge graph embedding: approaches, applications and benchmarks[J]. Electronics, 2020, 9 (5): 750
doi: 10.3390/electronics9050750
|
31 |
LEBLAY J, CHEKOL M W, LIU X, et al. Towards temporal knowledge graph embeddings with arbitrary time precision [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. [S. l.]: ACM, 2020: 685-694.
|
32 |
KAZEMI S M, POOLE D Simple embedding for link prediction in knowledge graphs[J]. Advances in Neural Information Processing Systems, 2018, 31 (3): 4289- 4300
|
33 |
GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI, 2020, 34(4): 3988-3995.
|
34 |
XU C, NAYYERI M, ALKHOURY F, et al. TeRo: a time-aware knowledge graph embedding via temporal rotation [C]// Proceedings of the 28th International Conference on Computational Linguistics . Barcelona: ACL, 2020: 1583-1593.
|
35 |
JIN W, QU M, JIN X, et al. Recurrent event network: autoregressive structure inference over temporal knowledge graphs [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing . [S. l. ]: ACL, 2020: 6669-6683.
|
36 |
LI Z, JIN X, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval . [S. l. ]: ACM, 2021: 408-417.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|