计算机技术 |
|
|
|
|
交通目标YOLO检测技术的研究进展 |
董红召( ),林少轩,佘翊妮 |
浙江工业大学 智能交通系统联合研究所,浙江 杭州 310023 |
|
Research progress of YOLO detection technology for traffic object |
Hongzhao DONG( ),Shaoxuan LIN,Yini SHE |
ITS Joint Research Institute, Zhejiang University of Technology, Hangzhou 310023, China |
1 |
KAFFASH S, NGUYEN A T, ZHU J Big data algorithms and applications in intelligent transportation system: a review and bibliometric analysis[J]. International Journal of Production Economics, 2021, 231: 107868
doi: 10.1016/j.ijpe.2020.107868
|
2 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (6): 1137- 1149
|
3 |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector [C]// Computer Vision–ECCV 2016: 14th European Conference . Amsterdam: Springer, 2016: 21-37.
|
4 |
LIN T Y, GOYAL P, GIRSHICK R, et al Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42 (2): 2999- 3007
|
5 |
ZHAO Z Q, ZHENG P, XU S T, et al Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (11): 3212- 3232
doi: 10.1109/TNNLS.2018.2876865
|
6 |
邓亚平, 李迎江 YOLO算法及其在自动驾驶场景中目标检测研究综述[J]. 计算机应用, 2024, 44 (6): 1949- 1958 DENG Yaping, LI Yingjiang Review of YOLO algorithm and its application to object detection in autonomous driving scenes[J]. Journal of ComputerApplications, 2024, 44 (6): 1949- 1958
|
7 |
ZAIDI S S A, ANSARI M S, ASLAM A, et al A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514
doi: 10.1016/j.dsp.2022.103514
|
8 |
王琳毅, 白静, 李文静, 等 YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59 (14): 15- 29 WANG Linyi, BAI Jing, LI Wenjing, et al Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59 (14): 15- 29
doi: 10.3778/j.issn.1002-8331.2301-0081
|
9 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779-788.
|
10 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 1-9.
|
11 |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K, et al The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88 (2): 303- 338
doi: 10.1007/s11263-009-0275-4
|
12 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 7263-7271.
|
13 |
REDMON J, FARHADI A. Yolov3: an incremental improvement [EB/OL]. [2023-01-20]. https://arxiv.org/abs/1804.02767.
|
14 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 770-778.
|
15 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 2117-2125.
|
16 |
RUBY U, YENDAPALLI V Binary cross entropy with deep learning technique for image classification[J]. Advanced Trends in Computer Science and Engineering, 2020, 9 (4): 5393- 5397
doi: 10.30534/ijatcse/2020/175942020
|
17 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context [C]// 13th European Conference of Computer Vision . Zurich: Springer, 2014: 740-755.
|
18 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection [EB/OL]. [2023-01-20]. https://arxiv.org/abs/2004.10934.
|
19 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops . Seattle: IEEE, 2020: 390-391.
|
20 |
HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916
doi: 10.1109/TPAMI.2015.2389824
|
21 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 8759-8768.
|
22 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Vancouver: AAAI Press, 2020: 12993-13000.
|
23 |
JOCHER G. YOLOv5 by ultralytics [EB/OL]. (2020-06-09) [2024-04-23]. https://github.com/ultralytics/yolov5.
|
24 |
GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 2918-2928.
|
25 |
ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization [EB/OL]. [2023-01-20]. https://arxiv.org/abs/1710.09412.
|
26 |
GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021 [EB/OL]. [2023-01-20]. https://arxiv.org/abs/2107.08430.
|
27 |
LAW H, DENG J. Cornernet: detecting objects as paired keypoints [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 734-750.
|
28 |
DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 6569-6578.
|
29 |
TIAN Z, SHEN C, CHEN H, et al. Fcos: fully convolutional one-stage object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 9627-9636.
|
30 |
LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. (2022-09-07) [2024-04-23]. https://arxiv.org/abs/2209.02976.
|
31 |
DING X, ZHANG X, MA N, et al. Repvgg: making vgg-style convnets great again [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 13733-13742.
|
32 |
ZHANG H, WANG Y, DAYOUB F, et al. Varifocalnet: an iou-aware dense object detector [C]/ /Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 8514-8523.
|
33 |
GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression [EB/OL]. (2022-05-25) [2024-04-23]. https://arxiv.org/abs/2205.12740.
|
34 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression [C]/ /Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seoul: IEEE, 2019: 658-666.
|
35 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 7464-7475.
|
36 |
WANG C Y, LIAO H Y M, YEH I H. Designing network design strategies through gradient path analysis [EB/OL]. (2022-11-09) [2024-04-23]. https://arxiv.org/abs/2211.04800.
|
37 |
JOCHER G, CHAURASIA A, QIU J. YOLO by ultralytics [EB/OL]. (2023-01-01) [2024-04-23]. https://github.com/ultralytics/ultralytics.
|
38 |
LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection [EB/OL]. [2023-01-20]. https://proceedings.neurips.cc/paper_files/paper/2020/file/f0bda020d2470f2e74990a07a607ebd9-Paper.pdf.
|
39 |
DU L, CHEN X, PEI Z, et al Improved real-time traffic obstacle detection and classification method applied in intelligent and connected vehicles in mixed traffic environment[J]. Journal of Advanced Transportation, 2022, 2022 (1): 2259113
|
40 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]// International Conference on Machine Learning . Sydney: PMLR, 2017: 214-223.
|
41 |
CAO J, ZHUANG Y, WANG M, et al. Pedestrian detection algorithm based on ViBe and YOLO [C]// Proceedings of the 5th International Conference on Video and Image Processing . New York: ACM, 2021: 92-97.
|
42 |
BARNICH O, VAN DROOGENBROECK M ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2010, 20 (6): 1709- 1724
|
43 |
CHEN X, JIA Y, TONG X, et al Research on pedestrian detection and deepsort tracking in front of intelligent vehicle based on deep learning[J]. Sustainability, 2022, 14 (15): 9281
doi: 10.3390/su14159281
|
44 |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]// IEEE International Conference on Image Processing . Beijing: IEEE, 2017: 3645-3649.
|
45 |
CHAVIS C, NYARKO K, CIRILLO C, et al. A comparative study of pedestrian crossing behavior and safety in Baltimore, MD and Washington, DC using video surveillance [R]. Baltimore: Morgan State University, 2023.
|
46 |
LIU X, ZHU Y. Passenger flow modeling and simulation in transit stations [R]. Newark: Rutgers University, 2022.
|
47 |
AURENHAMMER F, KLEIN R Voronoi diagrams[J]. Handbook of Computational Geometry, 2000, 5 (10): 201- 290
|
48 |
YOGESH R, RITHEESH V, REDDY S, et al. Driver drowsiness detection and alert system using YOLO [C]// International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems . Chennai: IEEE, 2022: 1-6.
|
49 |
方浩杰, 董红召, 林少轩, 等 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1287- 1296 FANG Haojie, DONG Hongzhao, LIN Shaoxuan, et al Driver fatigue state detection method based on multi-feature fusion[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1287- 1296
|
50 |
LIU S, WANG Y, YU Q, et al CEAM-YOLOv7: improved YOLOv7 based on channel expansion and attention mechanism for driver distraction behavior detection[J]. IEEE Access, 2022, 10: 129116- 129124
doi: 10.1109/ACCESS.2022.3228331
|
51 |
LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions [EB/OL]. (2021-12-10) [2024-04-23]. https://arxiv.org/abs/2112.05561.
|
52 |
ZHAO J, LI C, XU Z, et al. Detection of passenger flow on and off buses based on video images and YOLO algorithm [EB/OL]. [2023-01-20]. https://link.springer.com/article/10.1007/s11042-021-10747-w.
|
53 |
LI Y, WANG J, HUANG J, et al Research on deep learning automatic vehicle recognition algorithm based on RES-YOLO model[J]. Sensors, 2022, 22 (10): 3783
doi: 10.3390/s22103783
|
54 |
YU F, CHEN H, WANG X, et al. Bdd100k: a diverse driving dataset for heterogeneous multitask learning [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 2636-2645.
|
55 |
叶佳林, 苏子毅, 马浩炎, 等 改进YOLOv3的非机动车检测与识别方法[J]. 计算机工程与应用, 2021, 57 (1): 194- 199 YE Jialin, SU Ziyi, MA Haoyan, et al Improved YOLOv3 non-motor vehicles detection and recognition method[J]. Computer Engineering and Applications, 2021, 57 (1): 194- 199
doi: 10.3778/j.issn.1002-8331.2005-0343
|
56 |
RAJ V S, SAI J V M, YOGESH N L, et al. Smart traffic control for emergency vehicles prioritization using video and audio processing [C]// 6th International Conference on Intelligent Computing and Control Systems . Madurai: IEEE, 2022: 1588-1593.
|
57 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2014-09-04) [2024-04-23]. https://arxiv.org/abs/1409.1556.
|
58 |
SIMONY M, MILZY S, AMENDEY K, et al. Complex-yolo: an euler-region-proposal for real-time 3d object detection on point clouds [C]/ /Proceedings of the European Conference on Computer Vision Workshops. Munich: Springer, 2018: 197-209.
|
59 |
AZIMJONOV J, ÖZMEN A A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic flow on highways[J]. Advanced Engineering Informatics, 2021, 50: 101393
doi: 10.1016/j.aei.2021.101393
|
60 |
LIN C J, JHANG J Y Intelligent traffic-monitoring system based on YOLO and convolutional fuzzy neural networks[J]. IEEE Access, 2022, 10: 14120- 14133
doi: 10.1109/ACCESS.2022.3147866
|
61 |
EBADZADEH M M, SALIMI-BADR A CFNN: correlated fuzzy neural network[J]. Neurocomputing, 2015, 148: 430- 444
doi: 10.1016/j.neucom.2014.07.021
|
62 |
CVIJETIĆ A, DJUKANOVIĆ S, PERUNIČIĆ A. Deep learning-based vehicle speed estimation using the YOLO detector and 1D-CNN [C]// 27th International Conference on Information Technology . Žabljak: IEEE, 2023: 1-4.
|
63 |
RAHMAN Z, AMI A M, ULLAH M A. A real-time wrong-way vehicle detection based on YOLO and centroid tracking [C]// 2020 IEEE Region 10 Symposium . Dhaka: IEEE, 2020: 916-920.
|
64 |
SABRY K, EMAD M. Road traffic accidents detection based on crash estimation [C]// 17th International Computer Engineering Conference . Cairo: IEEE, 2021: 63-68.
|
65 |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition . San Francisco: IEEE, 2010: 2544-2550.
|
66 |
ARCEDA V M, FABIÁN K F, GUTÍERREZ J C. Real time violence detection in video [C]// The Institution of Engineering and Technology Conference Proceedings. Talca: IEEE, 2016.
|
67 |
GEIGER A, LENZ P, STILLER C, et al Vision meets robotics: the kitti dataset[J]. The International Journal of Robotics Research, 2013, 32 (11): 1231- 1237
doi: 10.1177/0278364913491297
|
68 |
DONG Z, WU Y, PEI M, et al Vehicle type classification using a semisupervised convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (4): 2247- 2256
doi: 10.1109/TITS.2015.2402438
|
69 |
GUERRERO-GÓMEZ-OLMEDO R, LÓPEZ-SASTRE R J, MALDONADO-BASCÓN S, et al. Vehicle tracking by simultaneous detection and viewpoint estimation [C]// Natural and Artificial Computation in Engineering and Medical Applications: 5th International Work-Conference on the Interplay Between Natural and Artificial Computation . Mallorca: Springer, 2013: 306-316.
|
70 |
DJUKANOVIĆ S, BULATOVIĆ N, ČAVOR I. A dataset for audio-video based vehicle speed estimation [C]// 30th Telecommunications Forum . Belgrade: IEEE, 2022: 1-4.
|
71 |
SONG W, SUANDI S A Tsr-yolo: a Chinese traffic sign recognition algorithm for intelligent vehicles in complex scenes[J]. Sensors, 2023, 23 (2): 749
doi: 10.3390/s23020749
|
72 |
ZHANG J, ZOU X, KUANG L D, et al. CCTSDB 2021: a more comprehensive traffic sign detection benchmark [EB/OL]. [2023-01-20]. https://centaur.reading.ac.uk/106129/1/12-23.pdf.
|
73 |
钱伍, 王国中, 李国平 改进YOLOv5的交通灯实时检测鲁棒算法[J]. 计算机科学与探索, 2022, 16 (1): 231- 241 QIAN Wu, WANG Guozhong, LI Guoping Improved YOLOv5 traffic light real-time detection robust algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (1): 231- 241
doi: 10.3778/j.issn.1673-9418.2105033
|
74 |
BEHRENDT K, NOVAK L, BOTROS R. A deep learning approach to traffic lights: detection, tracking, and classification [C]// IEEE International Conference on Robotics and Automation . Singapore: IEEE, 2017: 1370-1377.
|
75 |
MII Y, MIYAZAKI R, YOSHIMOTO Y, et al A road marking detection system using partial template matching and region estimation by deep neural network[J]. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2021, 33 (1): 566- 571
doi: 10.3156/jsoft.33.1_566
|
76 |
CHEN Z, WANG X, ZHANG W, et al Autonomous parking space detection for electric vehicles based on improved YOLOV5-OBB algorithm[J]. World Electric Vehicle Journal, 2023, 14 (10): 276
doi: 10.3390/wevj14100276
|
77 |
HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus) [EB/OL]. (2016-06-27) [2024-04-23]. https://arxiv.org/abs/1606.08415.
|
78 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 13713-13722.
|
79 |
董红召, 方浩杰, 张楠 旋转框定位的多尺度再生物品目标检测算法[J]. 浙江大学学报: 工学版, 2022, 56: 16- 25 DONG Hongzhao, FANG Haojie, ZHANG Nan Multi-scale object detection algorithm for recycled objects based on rotating block positioning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56: 16- 25
|
80 |
YANG X, YAN J. Arbitrary-oriented object detection with circular smooth label [C]// 16th European Conference of Computer Vision . Glasgow: Springer, 2020: 677-694.
|
81 |
SRIVASTAVA I. Retraining of object detectors to become suitable for trash detection in the context of autonomous driving [D]. Dresden: Technische Universität Dresden, 2022.
|
82 |
WAN F, SUN C, HE H, et al YOLO-LRDD: a lightweight method for road damage detection based on improved YOLOv5s[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022 (1): 98
doi: 10.1186/s13634-022-00931-x
|
83 |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient cnn architecture design [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 116-131.
|
84 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11534-11542.
|
85 |
PROENÇA P F, SIMOES P. Taco: trash annotations in context for litter detection [EB/OL]. (2020-03-16) [2024-04-23]. https://arxiv.org/abs/2003.06975.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|