计算机技术 |
|
|
|
|
基于改进YOLOv5s的烟梗物料目标检测算法 |
吕佳铭( ),张峰*( ),罗亚波 |
武汉理工大学 机电工程学院,湖北 武汉 430070 |
|
Improved YOLOv5s based target detection algorithm for tobacco stem material |
Jiaming LV( ),Feng ZHANG*( ),Yabo LUO |
School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China |
1 |
高尊华, 鲍文华, 程红军, 等 梗丝结构对卷烟质量稳定性的影响[J]. 烟草科技, 2007, (2): 5- 7 GAO Zunhua, BAO Wenhua, CHENG Hongjun, et al Influence of cut stem structure on quality stability of cigarette[J]. Tobacco Science and Technology, 2007, (2): 5- 7
doi: 10.3969/j.issn.1002-0861.2007.02.001
|
2 |
崔云月, 管一弘, 孙娜, 等 BP神经网络在烟梗长短梗率检测中的应用[J]. 软件导刊, 2021, 20 (2): 63- 67 CUI Yunyue, GUAN Yihong, SUN Na, et al The application of BP neural network in the determination of the stalk length and stem rate[J]. Software Guide, 2021, 20 (2): 63- 67
doi: 10.11907/rjdk.202478
|
3 |
杨耀伟, 张月华, 崔廷, 等 基于机器视觉和深度学习的烟梗识别方法[J]. 计算机应用, 2022, 42 (Suppl.1): 118- 122 YANG Yaowei, ZHANG Yuehua, CUI Ting, et al Tobacco stem recognition method based on machine vision and deep learning[J]. Journal of Computer Applications, 2022, 42 (Suppl.1): 118- 122
|
4 |
肖雷雨, 王澍, 刘渊根, 等 基于深度学习技术的烟梗形态分类与识别[J]. 烟草科技, 2021, 54 (6): 65- 74 XIAO Leiyu, WANG Shu, LIU Yuangen, et al Classification and identification of tobacco stem morphology based on deep learning technology[J]. Tobacco Science and Technology, 2021, 54 (6): 65- 74
|
5 |
刘新宇, 郝同盟, 张红涛, 等 基于改进YOLOv3网络的烟梗识别定位方法[J]. 食品与机械, 2022, 38 (3): 103- 109 LIU Xinyu, HAO Tongmeng, ZHANG Hongtao, et al Cigarette stem identification and location method based on improved YOLOv3 network[J]. Food and Machinery, 2022, 38 (3): 103- 109
|
6 |
苗新法, 刘宝莲, 李晓琴, 等. 改进YOLOV5s的铁轨裂纹目标检测算法[EB/OL]. [2023-11-03]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230825.1227.008.html.
|
7 |
崔丽群, 曹华维. 基于改进YOLOv5的遥感图像目标检测[EB/OL]. [2023-11-03]. https://doi.org/10.19678/j.issn.1000-3428.0067790.
|
8 |
金鑫, 庄建军, 徐子恒 轻量化YOLOv5s网络车底危险物识别算法[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1516- 1526 JIN Xin, ZHUANG Jianjun, XU Ziheng Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1516- 1526
|
9 |
ZHANG Z H, ZUO Z Y, LI Z, et al Real-time wheat unsound kernel classification detection based on improved YOLOv5[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2023, 27 (3): 474- 480
doi: 10.20965/jaciii.2023.p0474
|
10 |
HONG W W, MA Z H, YE B L, et al Detection of green asparagus in complex environments based on the improved YOLOv5 algorithm[J]. Sensors, 2023, 23 (3): 1562
doi: 10.3390/s23031562
|
11 |
YUAN J X, ZHENG X Z, PENG L W, et al Identification method of typical defects in transmission lines based on YOLOv5 object detection algorithm[J]. Energy Reports, 2023, (9): 323- 332
|
12 |
ZHOU T, YANG J. An improved YOLOv5 algorithm for construction solid waste detection [C]// IEEE 3rd International Conference on Electronic Technology , Communication and Information . Changchun: IEEE, 2023: 473–477.
|
13 |
FU Z. Vision transformer: vit and its derivatives [EB/OL]. [2023-08-24]. https://arxiv.org/abs/2205.11239.
|
14 |
LI C H, ZHANG C N. CNN or vit? revisiting vision transformers through the lens of convolution [EB/OL]. [2023-11-03]. https://arxiv.org/abs/2309.05375.
|
15 |
WANG A, CHEN H, LIN Z J, et al. Repvit: revisiting mobile cnn from vit perspective [EB/OL]. [2023-11-03]. https://arxiv.org/abs/2307.09283.
|
16 |
DING X H, ZHANG X Y, MA N N, et al. Repvgg: making vgg-style convnets great again [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 13733–13742.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|