计算机技术 |
|
|
|
|
基于多重过滤草图的网络超点测量算法 |
李卓1,2,3,4( ),孟晋虎1,4,林盛彦1,高源1,谷大伟1,尤辰至1,刘开华4,5 |
1. 天津大学 微电子学院,天津 300072 2. 鹏城国家实验室,广东 深圳 518000 3. 天津市成像与感知微电子技术重点实验室,天津 300072 4. 天津市数字信息技术研究中心,天津 300072 5. 天津仁爱学院 信息与智能工程学院,天津 301636 |
|
Network superspreader measurement algorithm based on multiple filter sketch |
Zhuo LI1,2,3,4( ),Jinhu MENG1,4,Shengyan LIN1,Yuan GAO1,Dawei GU1,Chenzhi YOU1,Kaihua LIU4,5 |
1. School of Microelectronics, Tianjin University, Tianjin 300072, China 2. The Peng Cheng Laboratory, Shenzhen 518000, China 3. Tianjin Microelectronics Technology Key Laboratory of Imaging and Perception, Tianjin 300072, China 4. Tianjin Digital Information Technology Research Center, Tianjin 300072, China 5. School of Information and Intelligent Engineering, Tianjin Ren’ai College, Tianjin 301636, China |
引用本文:
李卓,孟晋虎,林盛彦,高源,谷大伟,尤辰至,刘开华. 基于多重过滤草图的网络超点测量算法[J]. 浙江大学学报(工学版), 2025, 59(2): 289-299.
Zhuo LI,Jinhu MENG,Shengyan LIN,Yuan GAO,Dawei GU,Chenzhi YOU,Kaihua LIU. Network superspreader measurement algorithm based on multiple filter sketch. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 289-299.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.007
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I2/289
|
1 |
WANG R, DU H, SHEN Z, et al DAP-sketch: an accurate and effective network measurement sketch with deterministic admission policy[J]. Computer Networks, 2021, 194: 108155
doi: 10.1016/j.comnet.2021.108155
|
2 |
GENG N, XU M, YANG Y, et al. Adaptive and low-cost traffic engineering based on traffic matrix classification [C]// International Conference on Computer Communications and Networks. Honolulu: IEEE, 2020: 1-9.
|
3 |
YANG T, JIANG J, LIU P, et al Adaptive measurements using one elastic sketch[J]. IEEE/ACM Transactions on Networking, 2019, 27 (6): 2236- 2251
doi: 10.1109/TNET.2019.2943939
|
4 |
YANG K, LI Y, LIU Z, et al. SketchINT: empowering int with towersketch for per-flow per-switch measurement [C] // International Conference on Network Protocols. Dallas: IEEE, 2021: 1-12.
|
5 |
DING R, YANG S, CHEN X, et al. Bitsense: universal and nearly zero-error optimization for sketch counters with compressive sensing [C]// Proceedings of the ACM SIGCOMM 2023 Conference . New York: ACM, 2023: 220-238.
|
6 |
LU J, CHEN H, SUN P, et al OrderSketch: an unbiased and fast sketch for frequency estimation of data streams[J]. Computer Networks, 2021, 201: 108563
doi: 10.1016/j.comnet.2021.108563
|
7 |
ZHENG H, TIAN C, YANG T, et al. Flymon: enabling on-the-fly task reconfiguration for network measurement [C]// Proceedings of the ACM SIGCOMM 2022 Conference. Honolulu: ACM, 2022: 486-502.
|
8 |
DAI Y, WANG A, GUO Y, et al Elastically augmenting the control-path throughput in SDN to deal with internet DDoS attacks[J]. ACM Transactions on Internet Technology, 2023, 23 (1): 1- 25
|
9 |
JONATH K, LIU Z. Analysis of cyber security rebuts and its rising aims on current technologies [C]// International Conference on Computer Network Security and Software Engineering. Zhuhai: IEEE, 2022: 134-141.
|
10 |
SONG G, HE L, ZHAO T, et al. Which doors are open: reinforcement learning-based internet-wide port scanning [C]// International Symposium on Quality of Service. Orlando: IEEE, 2023: 1-10.
|
11 |
LIU L, DING T, FENG H, et al Tree sketch: an accurate and memory efficient sketch for network-wide measurement[J]. Computer Communications, 2022, 194: 148- 155
doi: 10.1016/j.comcom.2022.07.009
|
12 |
TANG L, XIAO Y, HUANG Q, et al A high-performance invertible sketch for network-wide superspreader detection[J]. IEEE/ACM Transactions on Networking, 2023, 31 (2): 724- 737
doi: 10.1109/TNET.2022.3198738
|
13 |
ZHOU Y, JIN H, LIU P, et al. Accurate per-flow measurement with bloom sketch [C] // IEEE Conference on Computer Communications Workshops. Honolulu: IEEE, 2018: 1-2.
|
14 |
LI Y, YU X, YANG Y, et al Pyramid family: generic frameworks for accurate and fast flow size measurement[J]. IEEE/ACM Transactions on Networking, 2021, 30 (2): 586- 600
|
15 |
CORMODE G, MUTHUKRISHNAN S An improved data stream summary: the count-min sketch and its applications[J]. Journal of Algorithms, 2005, 55 (1): 58- 75
doi: 10.1016/j.jalgor.2003.12.001
|
16 |
ESTAN C, VARGHESE G New directions in traffic measurement and accounting: focusing on the elephants, ignoring the mice[J]. ACM Transactions on Computer Systems, 2004, 21 (3): 44
|
17 |
CHARIKAR M, CHEN K, FARACHCOLTON M Finding frequent items in data streams[J]. Theoretical Computer Science, 2004, 312 (1): 3- 15
doi: 10.1016/S0304-3975(03)00400-6
|
18 |
YANG T, GAO S, SUN Z, et al Diamond sketch: accurate per-flow measurement for big streaming data[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30 (12): 2650- 2662
doi: 10.1109/TPDS.2019.2923772
|
19 |
LI J, LI Z, XU Y, et al. WavingSketch: an unbiased and generic sketch for finding top-k items in data streams [C] // 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event. California: ACM, 2020: 1574-1584.
|
20 |
ESTAN C, VARGHESE G, FISK M. Bitmap algorithms for counting active flows on high speed links [C]// Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement . San Francisco: ACM, 2003: 153-166.
|
21 |
COHEN S, MATIAS Y. Spectral bloom filters [C]// Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data . San Francisco: AC-M, 2003: 241-252.
|
22 |
EINZIGER G, FRIEDMAN R. A formal analysis of conservative update based approximate counting [C]// International Conference on Computing, Networking and Communications. Anaheim: IEEE, 2015: 255-259.
|
23 |
CLAUDIO L, SALVATORE O, RAFFAELE P, et al. Webdocs [EB/OL]. (2018-07-16)[2023-11-29]. http://fimi.uantwerpen.be/data/.
|
24 |
CAIDA. The CAIDA anonymized Internet traces 2018 dataset [EB/OL]. (2018-09-19)[2023-11-29]. https://www.caida.org/catalog/datasets/passive_dataset/.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|