计算机技术 |
|
|
|
|
基于改进YOLOv8s的钢材表面缺陷检测算法 |
梁礼明( ),龙鹏威,金家新,李仁杰,曾璐*( ) |
江西理工大学 电气工程与自动化学院,江西 赣州 341000 |
|
Steel surface defect detection algorithm based on improved YOLOv8s |
Liming LIANG( ),Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG*( ) |
School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China |
引用本文:
梁礼明,龙鹏威,金家新,李仁杰,曾璐. 基于改进YOLOv8s的钢材表面缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(3): 512-522.
Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG. Steel surface defect detection algorithm based on improved YOLOv8s. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 512-522.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.009
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I3/512
|
1 |
王安静, 袁巨龙, 朱勇建, 等 基于改进YOLOv8s的鼓形滚子表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (2): 370- 380 WANG Anjing, YUAN Julong, ZHU Yongjian, et al Drum roller surface defect detection algorithm based on improved YOLOv8s[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (2): 370- 380
|
2 |
袁天乐, 袁巨龙, 朱勇建, 等 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (12): 2349- 2357 YUAN Tianle, YUAN Julong, ZHU Yongjian, et al Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (12): 2349- 2357
|
3 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2014: 580–587.
|
4 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
5 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision . Heideberg: Springer, 2016: 21−37.
|
6 |
HUSSAIN M YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11 (7): 677
doi: 10.3390/machines11070677
|
7 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]// European Conference on Computer Vision . Cham: Springer, 2020: 213–229.
|
8 |
ZHOU S, ZENG Y, LI S, et al Surface defect detection of rolled steel based on lightweight model[J]. Applied Sciences, 2022, 12 (17): 8905
doi: 10.3390/app12178905
|
9 |
QIN R, CHEN N, HUANG Y. EDDNet: An efficient and accurate defect detection network for the industrial edge environment [C]// IEEE 22nd International Conference on Software Quality, Reliability and Security . Guangzhou: IEEE, 2022: 854–863.
|
10 |
YANG L, HUANG X, REN Y, et al Steel plate surface defect detection based on dataset enhancement and lightweight convolution neural network[J]. Machines, 2022, 10 (7): 523
doi: 10.3390/machines10070523
|
11 |
张政超 改进YOLOv5的轻量级带钢表面缺陷检测[J]. 计算机系统应用, 2023, 32 (6): 278- 285 ZHANG Zhengchao Lightweight strip steel defect detection based on improved YOLOv5[J]. Computer System Applications, 2023, 32 (6): 278- 285
|
12 |
蔡剑锋, 柏俊杰, 张雪, 等 基于改进Mask R-CNN 的金属板材表面缺陷检测[J]. 重庆科技学院学报: 自然科学版, 2023, 25 (2): 110- 116 CAI Jianfeng, BAI Junjie, ZHANG Xue, et al Research on surface defect recognition of metal sheet based on improved Mask R-CNN[J]. Journal of Chongqing Institute of Science and Technology: Natural Science Edition, 2023, 25 (2): 110- 116
|
13 |
阎馨, 杨月川, 屠乃威 基于改进SSD的钢材表面缺陷检测[J]. 现代制造工程, 2023, (5): 112- 120 YAN Xin, YANG Yuechuan, TU Naiwei Steel surface defect detection based on improved SSD[J]. Modern Manufacturing Engineering, 2023, (5): 112- 120
|
14 |
LI J, WEN Y, HE L. Scconv: spatial and channel reconstruction convolution for feature redundancy [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 6153–6162.
|
15 |
JIAO J, TANG Y M, LIN K Y, et al. Dilateformer: multi-scale dilated transformer for visual recognition [J]. IEEE Transactions on Multimedia , 2023, 25: 8906–8919.
|
16 |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient cnn architecture design [C]// Proceedings of the European Conference on Computer Vision . Cham: Springer, 2018: 116–131.
|
17 |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 4510–4520.
|
18 |
曹义亲, 伍铭林, 徐露 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44 (2): 335- 345 CAO Yiqin, WU Minglin, XU Lu Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44 (2): 335- 345
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|