机械工程 |
|
|
|
|
面向移动作业的腿足机器人数字孪生系统 |
林俊杰1( ),朱雅光1,2,*( ),刘春潮1,刘昊洋1 |
1. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064 2. 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨 150001 |
|
Digital twin system of legged robot for mobile operation |
Junjie LIN1( ),Yaguang ZHU1,2,*( ),Chunchao LIU1,Haoyang LIU1 |
1. The Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an 710064, China 2. State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
林俊杰,朱雅光,刘春潮,刘昊洋. 面向移动作业的腿足机器人数字孪生系统[J]. 浙江大学学报(工学版), 2024, 58(9): 1956-1969.
Junjie LIN,Yaguang ZHU,Chunchao LIU,Haoyang LIU. Digital twin system of legged robot for mobile operation. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1956-1969.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.020
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1956
|
1 |
LU Y Industry 4.0: a survey on technologies, applications and open research issues[J]. Journal of Industrial Information Integration, 2017, 6: 1- 10
doi: 10.1016/j.jii.2017.04.005
|
2 |
ZEID I, STEIGER-ESCOBAR S, BOGRAD M, et al. Industry partnership to help transform liberal arts graduates to advanced manufacturing careers [C]// ASME International Mechanical Engineering Congress and Exposition . Houston: American Society of Mechanical Engineers, 2015.
|
3 |
GRANGEL-GONZÁLEZ I, HALILAJ L, COSKUN G, et al. Towards a semantic administrative shell for industry 4.0 components [C]// 2016 IEEE 10th International Conference on Semantic Computing . Laguna Hills: IEEE, 2016: 230−237.
|
4 |
LI L China's manufacturing locus in 2025: with a comparison of "Made-in-China 2025" and "Industry 4.0"[J]. Technological Forecasting and Social Change, 2018, 135: 66- 74
doi: 10.1016/j.techfore.2017.05.028
|
5 |
MALIK A A, BREM A Digital twins for collaborative robots: a case study in human-robot interaction[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102092
doi: 10.1016/j.rcim.2020.102092
|
6 |
TUEGEL E J, INGRAFFEA A R, EASON T G, et al Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, (1): 154798
|
7 |
CERRONE A, HOCHHALTER J, HEBER G, et al On the effects of modeling as-manufactured geometry: toward digital twin[J]. International Journal of Aerospace Engineering, 2014, (1): 439278
|
8 |
HUANG Z Q, SHEN Y, LI J Y, et al A survey on AI-driven digital twins in industry 4.0: smart manufacturing and advanced robotics[J]. Sensors, 2021, 21 (19): 6340
doi: 10.3390/s21196340
|
9 |
杨艳芳, 贺焕, 舒亮, 等 断路器柔性装配数字孪生机器人及其运动控制[J]. 计算机集成制造系统, 2020, 26 (11): 2915- 2926 YANG Yanfang, HE Huan, SHU Liang, et al Digital twin robot and its motion control for flexible assembly of circuit breaker[J]. Computer Integrated Manufacturing Systems, 2020, 26 (11): 2915- 2926
|
10 |
LUMER-KLABBERS G, HAUSTED J O, KVISTGAARD J L, et al. Towards a digital twin framework for autonomous robots [C]// 2021 IEEE 45th Annual Computers, Software, and Applications Conference . Madrid: IEEE, 2021: 1254−1259.
|
11 |
LIU H, ZHAO W, LI S, et al Construction method of virtual-real drive systems for robots in digital twin workshops[J]. China Mechanical Engineering, 2022, 33 (21): 2623
|
12 |
HOU Z, HE W Modeling and control of digital twin-based aircraft assembly state inspection robot[J]. Computer Integrated Manufacturing Systems, 2021, 27 (4): 981- 989
|
13 |
YAMADA T, ABE H, KAWABATA K. Development of testing method considering tasks with remotely controlled robots in Fukushima Daiichi nuclear power station [C]// 2 021 IEEE International Conference on Intelligence and Safety for Robotics . Tokoname: IEEE, 2021: 131−134.
|
14 |
GARG G, KUTS V, ANBARJAFARI G Digital twin for fanuc robots: industrial robot programming and simulation using virtual reality[J]. Sustainability, 2021, 13 (18): 10336
doi: 10.3390/su131810336
|
15 |
SWEE S K, AL-QUDAH A. Wireless control system for six-legged autonomous insect robot [C]// MATEC Web of Conferences . Cape Town: EDP Sciences, 2016.
|
16 |
LIANG S N, TAN K O, CLEMENT T H L, et al. Open source hardware and software platform for robotics and artificial intelligence applications [C]// IOP Conference Series: Materials Science and Engineering . Kuala Lumpur: IOP Publishing, 2016.
|
17 |
LIN R, GUO W, LI M, et al. Novel design of a legged mobile lander for extraterrestrial planet exploration [J]. International Journal of Advanced Robotic Systems , 2017, 14(6): 1729881417746120.
|
18 |
WANG Y, MA H mvil-fusion: monocular visual-inertial-lidar simultaneous localization and mapping in challenging environments[J]. IEEE Robotics and Automation Letters, 2022, 8 (2): 504- 511
|
19 |
LIU Y, LI Z, XIAO L, et al FDO-Calibr: visual-aided IMU calibration based on frequency-domain optimization[J]. Measurement Science and Technology, 2023, 34 (4): 045108
doi: 10.1088/1361-6501/acadfb
|
20 |
GOMEZ-OJEDA R, MORENO F A, ZUNIGA-NOËL D, et al PL-SLAM: a stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019, 35 (3): 734- 746
doi: 10.1109/TRO.2019.2899783
|
21 |
LU Y, LIU C, KEVIN I, et al Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101837
doi: 10.1016/j.rcim.2019.101837
|
22 |
REZAEE H, ABDOLLAHI F A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots[J]. IEEE Transactions on Industrial Electronics, 2013, 61 (1): 347- 354
|
23 |
ZHU Y, ZHANG L, MANOONPONG P Generic mechanism for waveform regulation and synchronization of oscillators: an application for robot behavior diversity generation[J]. IEEE Transactions on Cybernetics, 2020, 52 (6): 4495- 4507
|
24 |
ZHU Y, ZHOU S, GAO D, et al Synchronization of non-linear oscillators for neurobiologically inspired control on a bionic parallel waist of legged robot[J]. Frontiers in Neurorobotics, 2019, 13: 59
|
25 |
DI Carlo J, WENSING P M, KATZ B, et al. Dynamic locomotion in the mit cheetah 3 through convex model-predictive control [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 1−9.
|
26 |
VILLARREAL O, BARASUOL V, WENSING P M, et al. MPC-based controller with terrain insight for dynamic legged locomotion [C]// IEEE International Conference on Robotics and Automation . Paris: IEEE, 2020: 2436−2442.
|
27 |
RIGHETTI L, IJSPEERT A J. Pattern generators with sensory feedback for the control of quadruped locomotion [C]// IEEE International Conference on Robotics and Automation . Pasadena: IEEE, 2008: 819−824.
|
28 |
QIN H, ZHU Y, ZHANG Y, et al. Terrain estimation with least squares and virtual model control for quadruped robots [C]// Journal of Physics: Conference Series . Wuhan: IOP Publishing, 2022.
|
29 |
QIN T, LI P, SHEN S VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34 (4): 1004- 1020
doi: 10.1109/TRO.2018.2853729
|
30 |
AKINLAR C, TOPAL C. Edlines: real-time line segment detection by edge drawing (ed) [C]// 18th IEEE International Conference on Image Processing . Brussels: IEEE, 2011: 2837−2840.
|
31 |
ZHANG L, KOCH R An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency[J]. Journal of Visual Communication and Image Representation, 2013, 24 (7): 794- 805
doi: 10.1016/j.jvcir.2013.05.006
|
32 |
QIN T, SHEN S. Online temporal calibration for monocular visual-inertial systems [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 3662−3669.
|
33 |
CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al Orb-slam3: an accurate open-source library for visual, visual-inertial, and multimap slam[J]. IEEE Transactions on Robotics, 2021, 37 (6): 1874- 1890
doi: 10.1109/TRO.2021.3075644
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|