Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1460-1469    DOI: 10.3785/j.issn.1008-973X.2023.07.021
电气工程     
基于动态量化的电力系统事件触发负荷频率控制
丁三波1(),张康1,杨飞生2,张家安3
1. 河北工业大学 人工智能与数据科学学院,天津 300401
2. 西北工业大学 自动化学院,陕西 西安 710072
3. 河北工业大学 电气工程学院,天津 300401
Event-triggered load frequency control for power system based on dynamic quantization
San-bo DING1(),Kang ZHANG1,Fei-sheng YANG2,Jia-an ZHANG3
1. College of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China
2. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
3. College of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
 全文: PDF(1511 KB)   HTML
摘要:

针对新能源高比例并网以及由此产生的二次调频通信负荷增加问题,为了节约网络资源,将动态量化技术引入网络控制的电力系统中,应用事件触发负荷频率控制(LFC)方法,通过基于观测器的输出反馈控制器,实现了LFC系统输入到状态稳定. 根据系统状态和动态量化参数,在反馈通道中设计加入指数衰减项的事件触发机制,在前向通道中设计加入状态模拟项的事件触发机制. 建立基于量化控制的事件触发LFC系统动态模型,在有界负荷扰动下得到闭环系统输入到状态稳定的条件,排除了Zeno现象. 通过仿真实验验证了提出方法的有效性.

关键词: 网络控制系统负荷频率控制事件触发负荷动态量化输入到状态稳定    
Abstract:

The dynamic quantization technology was introduced into the network-controlled power system and the event-triggered load frequency control (LFC) method was applied to save the network resources aiming at the high proportion of new energy connected to the grid and the increasing communication load of secondary frequency modulation. The input-to-state stability of LFC system was realized by observer-based output feedback controller. An event-triggered mechanism with exponential decay term was designed for the feedback channel, and an event-triggered mechanism with state simulation term was designed for the forward channel according to the system state and dynamic quantization parameters. A dynamic model of event-triggered LFC system based on quantization communication was established. The condition of closed-loop system input-to-state stability was obtained under the bounded load disturbance. Zeno phenomenon was eliminated. The effectiveness of the proposed method was verified by simulation.

Key words: network-controlled system    load frequency control    event-triggered load    dynamic quantization    input-to-state stability
收稿日期: 2022-07-23 出版日期: 2023-07-17
CLC:  TP 13  
基金资助: 国家自然科学基金资助项目(61903121,62073269);河北省自然科学基金资助项目(F2020202063);河北省创新能力提升计划资助项目(18961604H);航空科学基金资助项目(2020Z0340-53002);陕西省重点研发计划资助项目(2022GY-244)
作者简介: 丁三波(1989—),男,副教授,博导,从事智能控制和网络化控制的研究. orcid.org/0000-0002-1438-5330. E-mail: dingsanbo@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
丁三波
张康
杨飞生
张家安

引用本文:

丁三波,张康,杨飞生,张家安. 基于动态量化的电力系统事件触发负荷频率控制[J]. 浙江大学学报(工学版), 2023, 57(7): 1460-1469.

San-bo DING,Kang ZHANG,Fei-sheng YANG,Jia-an ZHANG. Event-triggered load frequency control for power system based on dynamic quantization. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1460-1469.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.021        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1460

图 1  单区域负荷频率控制系统的动态模型
图 2  基于量化控制的负荷频率控制系统动态模型
参数 参数值 参数 参数值
M/Hz?1 10 Tg/s 0.1
D/Hz?1 1 R/Hz 0.05
Tch/s 0.3 $\;\beta$/Hz?1 21
表 1  电力负荷频率控制系统的参数
图 3  系统频率偏差的响应曲线
图 4  系统状态的响应曲线
图 5  观测器状态的响应曲线
图 6  状态估计误差的响应曲线
图 7  测量输出信号和输出量化器的响应曲线
图 8  控制输入信号和输入量化器的响应曲线
图 9  缩放变量的响应曲线
图 10  系统频率偏差的响应曲线[22]
图 11  基于所提方法的事件触发间隔
图 12  事件触发间隔[22]
1 ZHANG C K, JIANG L, WU Q H, et al Delay-dependent robust load frequency control for time delay power systems[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 2192- 2201
doi: 10.1109/TPWRS.2012.2228281
2 XIAHOU K S, LIU Y, WU Q H Robust load frequency control of power systems against random time-delay attacks[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 909- 911
doi: 10.1109/TSG.2020.3018635
3 SHANGGUAN X C, HE Y, ZHANG C K, et al Control performance standards-oriented event-triggered load frequency control for power systems under limited communication bandwidth[J]. IEEE Transactions on Control Systems Technology, 2022, 30 (2): 860- 868
doi: 10.1109/TCST.2021.3070861
4 SHANGGUAN X C, ZHANG C K, HE Y, et al Robust load frequency control for power system considering transmission delay and sampling period[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5292- 5303
doi: 10.1109/TII.2020.3026336
5 李军, 李韬 基于贝叶斯序贯博弈模型的智能电网信息物理安全分析[J]. 自动化学报, 2019, 45 (1): 98- 109
LI Jun, LI Tao Cyber-physical security analysis of smart grids with Bayesian sequential game models[J]. Acta Automatica Sinica, 2019, 45 (1): 98- 109
doi: 10.16383/j.aas.2018.c180336
6 王中杰, 谢璐璐 信息物理融合系统研究综述[J]. 自动化学报, 2011, 37 (10): 1157- 1166
WANG Zhong-jie, XIE Lu-lu Cyber-physical systems: a survey[J]. Acta Automatica Sinica, 2011, 37 (10): 1157- 1166
7 杨飞生, 汪璟, 潘泉 基于事件触发机制的网络控制研究综述[J]. 控制与决策, 2018, 33 (6): 969- 977
YANG Fei-sheng, WANG Jing, PAN Quan A survey of networked event-triggered control[J]. Control and Decision, 2018, 33 (6): 969- 977
doi: 10.13195/j.kzyjc.2017.0531
8 XIE X P, WEI C, GU Z, et al Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (11): 5044- 5050
doi: 10.1109/TFUZZ.2022.3145809
9 ZHANG P P, LIU T F, JIANG Z P Event-triggered stabilization of a class of nonlinear time-delay systems[J]. IEEE Transactions on Automatic Control, 2021, 66 (1): 421- 428
doi: 10.1109/TAC.2020.2979828
10 ZHANG H, LIU J, XU S Y Practical stability and event- triggered load frequency control of networked power systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (10): 6296- 6304
doi: 10.1109/TSMC.2022.3143853
11 CHEN P C, ZHANG D, YU L, et al Dynamic event-triggered output feedback control for load frequency control in power systems with multiple cyber attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (10): 6246- 6258
doi: 10.1109/TSMC.2022.3143903
12 WEN S P, YU X H, ZENG Z G, et al Event-triggering load frequency control for multi-area power systems with communication delays[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (2): 1308- 1317
doi: 10.1109/TIE.2015.2399394
13 LIU G P, PARK J H, HUA C C, et al Hybrid dynamic event-triggered load frequency control for power systems with unreliable transmission networks[J]. IEEE Transactions on Cybernetics, 2023, 53 (2): 806- 817
doi: 10.1109/TCYB.2022.3163271
14 WU C Y, ZHAO X D, WANG B H, et al Model-based dynamic event-triggered control for cyber-physical systems subject to dynamic quantization and DoS attacks[J]. IEEE Transactions on Network Science and Engineering, 2022, 9 (4): 2406- 2417
doi: 10.1109/TNSE.2022.3163783
15 PENG C, LI J C, FEI M R Resilient event-triggering H load frequency control for multi-area power systems with energy limited DoS attacks [J]. IEEE Transactions on Power Systems, 2017, 32 (5): 4110- 4118
doi: 10.1109/TPWRS.2016.2634122
16 杨飞生, 汪璟, 潘泉, 等 网络攻击下信息物理融合电力系统的弹性事件触发控制[J]. 自动化学报, 2019, 45 (1): 110- 119
YANG Fei-sheng, WANG Jing, PAN Quan, et al Resilient event-triggered control of grid cyber-physical systems against cyber attack[J]. Acta Automatica Sinica, 2019, 45 (1): 110- 119
doi: 10.16383/j.aas.c180388
17 YUE D, TIAN E G, HAN Q L A delay system method for designing event-triggered controllers of networked control systems[J]. IEEE Transactions on Automatic Control, 2013, 58 (2): 475- 481
doi: 10.1109/TAC.2012.2206694
18 PENG C, ZHANG J, YAN H C Adaptive event-triggering H∞ load frequency control for network-based power systems [J]. IEEE Transactions on Industrial Electronics, 2018, 65 (2): 1685- 1694
doi: 10.1109/TIE.2017.2726965
19 SELIVANOV A, FRADKOV A, LIBERZON D Adaptive control of passifiable linear systems with quantized measurements and bounded disturbances[J]. Systems and Control Letters, 2016, 88: 62- 67
doi: 10.1016/j.sysconle.2015.12.001
20 LIBERZON D Hybrid feedback stabilization of systems with quantized signals[J]. Automatica, 2003, 39 (9): 1543- 1554
doi: 10.1016/S0005-1098(03)00151-1
21 LIU K, FRIDMAN E, JOHANSSON K H Dynamic quantization of uncertain linear networked control systems[J]. Automatica, 2015, 59: 248- 255
doi: 10.1016/j.automatica.2015.06.041
22 ZHOU T W, ZUO Z Q, WANG Y J Self-triggered and event-triggered control for linear systems with quantization[J]. IEEE Transactions on Systems, Man, and Cybernetics Systems, 2020, 50 (9): 3136- 3144
doi: 10.1109/TSMC.2018.2833114
23 TANWANI A, PRIEUR C, FIACCHINI M Observer-based feedback stabilization of linear systems with event-triggered sampling and dynamic quantization[J]. Systems and Control Letters, 2016, 94: 46- 56
doi: 10.1016/j.sysconle.2016.05.008
[1] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[2] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[3] 孙坚栋,蒋静坪. 具有时延和丢包的网络控制系统的镇定[J]. J4, 2011, 45(9): 1593-1597.
[4] 鲁仁全, 魏强, 薛安克. 基于线性量化的网络控制系统状态观测器设计[J]. J4, 2010, 44(7): 1400-1405.
[5] 王柱锋 李丽春 黄杭美. 延时预测内模网络控制系统[J]. J4, 2008, 42(11): 1885-1888.
[6] 陈宁宁 朱轶强 蒋静坪. 基于Internet的网络控制系统H∞鲁棒控制[J]. J4, 2007, 41(2): 249-253.