Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1450-1459    DOI: 10.3785/j.issn.1008-973X.2023.07.020
电气工程     
基于空间域dP/dV计算的光伏控制方法
倪佳华1(),项基1,*(),赵波2
1. 浙江大学 电气工程学院,浙江 杭州 310027
2. 国网浙江省电力有限公司电力科学研究院,浙江 杭州 310014
Spatial-domain dP/dV calculation based photovoltaic control method
Jia-hua NI1(),Ji XIANG1,*(),Bo ZHAO2
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
 全文: PDF(3176 KB)   HTML
摘要:

为了消除基于扰动观测方法下的光伏系统输出稳态振荡,针对当前步长计算中dP/dV存在的零分母问题,以空间上相邻的数据计算dP/dV,去掉扰动观测,直接以dP/dV作为控制变量. 在稳态下,避免了零分母问题,实现了稳态时无振荡;在动态下,高频的信号更新反馈保证了快速的动态跟踪过程. 统一了最大功率跟踪模式(dP/dV = 0)和功率热备模式(dP/dV < 0),可以在不同的d P/dV参考值下实现优秀的输出性能. 在Matlab/Simulink仿真和实物实验中,通过与传统P&O算法及最新MPPT算法的对比,证明了所提算法在最大功率跟踪性能上的优势;与基于时域dP/dV计算的控制方法对比,证明了所提算法在功率热备输出性能上的优势.

关键词: 光伏(PV)最大功率跟踪(MPPT)功率热备稳态振荡    
Abstract:

A novel approach was proposed to address the zero-denominator issue encountered in the current step calculation of dP/dV in order to eliminate steady-state oscillations in the output of photovoltaic (PV) system based on the perturbation and observation (P&O) method. dP/dV was calculated based on data from adjacent points in space, eliminating perturbation observation. The dP/dV value was directly used as the control variable. The zero-denominator issue was circumvented in the steady state, ensuring zero oscillation. The high-frequency signal updating feedback guaranteed a swift dynamic tracking process during dynamic states. The maximum power point tracking mode (dP/dV = 0) and the power standby mode (dP/dV < 0) were unified, achieving excellent output performance under various d P/dV reference values. Both Matlab/Simulink simulations and physical experiments were conducted. The superiority of the proposed algorithm in terms of maximum power tracking performance was demonstrated by comparing with traditional P&O algorithms and the latest MPPT algorithms. Further comparison with control methods based on time-domain dP/dV calculation showed the advantage of the proposed algorithm in power standby output performance.

Key words: photovoltaic (PV)    maximum power point tracking (MPPT)    power reserve    steady state oscillation
收稿日期: 2022-07-08 出版日期: 2023-07-17
CLC:  TM 91  
基金资助: 国家自然科学基金资助项目(62173295)
通讯作者: 项基     E-mail: nijiahua@zju.edu.cn;jxiang@zju.edu.cn
作者简介: 倪佳华(1991—),男,博士生,从事光伏系统控制的研究. orcid.org/0000-0002-8614-1140. E-mail: nijiahua@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
倪佳华
项基
赵波

引用本文:

倪佳华,项基,赵波. 基于空间域dP/dV计算的光伏控制方法[J]. 浙江大学学报(工学版), 2023, 57(7): 1450-1459.

Jia-hua NI,Ji XIANG,Bo ZHAO. Spatial-domain dP/dV calculation based photovoltaic control method. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1450-1459.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.020        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1450

图 1  KC200GT阵列在不同的温度和辐照度下的特性曲线
图 2  基于空间域dP/dV计算的光伏系统控制结构
图 3  空间域的定义
图 4  空间域dP/dV计算的流程图
图 5  不同δ下的dP/dV跟踪精度
图 6  不同δ下的dP/dv跟踪快速性
参数 参数值
电容C/μF 1 000
电感L/mH 3
开关频率 fs/kHz 20
电池电压 Vb/V 110
MPP处功率 Pmpp/W 1 601
MPP处电压 Vmpp/V 52.6
MPP 处电流 Impp/A 30.44
开路电压 Uoc/V 65.9
短路电流 Isc/A 32.8
表 1  光伏系统参数
图 7  不同MPPT算法下的光伏输出
图 8  不同dP/dV计算方法下的功率热备输出
图 9  光伏发电实验装置
图 10  辐照度和温度的变化曲线
图 11  基于所提空间域dP/dv计算方法的光伏输出
图 12  传统P&O MPPT算法下的光伏输出
图 13  SOFT-MPPT算法下的光伏输出
图 14  基于时域dP/dV计算的方法在不同dP/dV参考值下的光伏输出
图 15  基于空间域dP/dV计算的方法在不同的dP/dV参考值下的光伏输出
1 苗青青, 石春艳, 张香平 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41 (3): 1125- 1131
MIAO Qing-qing, SHI Chun-yan, ZHANG Xiang-ping Photovoltaic technology under carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41 (3): 1125- 1131
doi: 10.16085/j.issn.1000-6613.2021-2500
2 TAFTI H D, KONSTANTINOU G, TOWNSEND C D, et al Extended functionalities of photovoltaic systems with flexible power point tracking: recent advances[J]. IEEE Transactions on Power Electronics, 2020, 35 (9): 9342- 9356
doi: 10.1109/TPEL.2020.2970447
3 BOLLIPO R B, MIKKILI S, BONTHAGORLA P K Critical review on PV MPPT techniques: classical, intelligent and optimisation[J]. IET Renewable Power Generation, 2020, 14 (9): 1433- 1452
doi: 10.1049/iet-rpg.2019.1163
4 刘中建, 周明, 李昭辉, 等 高比例新能源电力系统的惯量控制技术与惯量需求评估综述[J]. 电力自动化设备, 2021, 41 (12): 1- 11
LIU Zhong-jian, ZHOU Ming, LI Zhao-hui, et al Review of inertia control technology and requirement evaluation in renewable-dominant power system[J]. Electric Power Automation Equipment, 2021, 41 (12): 1- 11
doi: 10.16081/j.epae.202107030
5 焦晓红, 王鲁浩 风光混合发电系统的功率协调控制[J]. 电机与控制学报, 2013, 17 (6): 82- 88
JIAO Xiao-hong, WANG Lu-hao Coordinated control of power for hybrid wind-PV generation system[J]. Electric Machines and Control, 2013, 17 (6): 82- 88
doi: 10.3969/j.issn.1007-449X.2013.06.013
6 钟庆, 石泉, 王钢, 等 基于扰动式MPPT控制的光伏并网系统间谐波分析模型[J]. 中国电机工程学报, 2018, 38 (22): 6533- 6542
ZHONG Qing, SHI Quan, WANG Gang, et al Interharmonic analysis model of photovoltaic grid-connected system based on perturbed MPPT control[J]. Proceedings of the CSEE, 2018, 38 (22): 6533- 6542
doi: 10.13334/j.0258-8013.pcsee.180020
7 XIA Y, YU M, YANG P, et al Generation-storage coordination for islanded DC microgrids dominated by PV generators[J]. IEEE Transactions on Energy Conversion, 2019, 34 (1): 130- 138
doi: 10.1109/TEC.2018.2860247
8 POKHAREL M, GHOSH A, HO C N M Small-signal modelling and design validation of PV-controllers with INC-MPPT using CHIL[J]. IEEE Transactions on Energy Conversion, 2019, 34 (1): 361- 371
doi: 10.1109/TEC.2018.2874563
9 卫东, 王央康, 常亚文 一种基于增量电导法的变步长MPPT算法[J]. 太阳能学报, 2018, 39 (5): 1277- 1283
WEI Dong, WANG Yang-kang, CHANG Ya-wen A variable step-size MPPT algorithm based on incremental conductance method[J]. Acta Energiae Solaris Sinica, 2018, 39 (5): 1277- 1283
10 LIU F F, DUAN S, LIU F F, et al A variable step size INC MPPT method for PV systems[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (7): 2622- 2628
doi: 10.1109/TIE.2008.920550
11 FATHABADI H Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking[J]. Energy, 2016, 94: 466- 475
doi: 10.1016/j.energy.2015.10.133
12 ZHOU D B, CHEN Y R Maximum power point tracking strategy based on modified variable step-size incremental conductance algorithm[J]. Power System Technology, 2015, 39 (6): 1491- 1498
13 TAFTI H D, SANGWONGWANICH A, YANG Y, et al An adaptive control scheme for flexible power point tracking in photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2019, 34 (6): 5451- 5463
doi: 10.1109/TPEL.2018.2869172
14 李向丽, 闫朝阳, 高燕妮, 等 光伏系统稳态无振荡扰动观察MPPT研究[J]. 太阳能学报, 2016, 37 (12): 3014- 3021
LI Xiang-li, YAN Chao-yang, GAO Yan-ni, et al Research of steady state without oscillation in perturband observe maximum power point tracking of PV system[J]. Acta Energiae Solaris Sinica, 2016, 37 (12): 3014- 3021
15 BHATTACHARYYA S, KUMAR P D S, SAMANTA S, et al Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and INC algorithms[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (1): 293- 302
doi: 10.1109/TSTE.2020.2991768
16 CAI H, XIANG J, WEI W, et al V-dP/dv droop control for PV sources in DC microgrids [J]. IEEE Transactions on Power Electronics, 2018, 33 (9): 7708- 7720
doi: 10.1109/TPEL.2017.2771803
17 VILLALVA M G, GAZOLI J R, FILHO E R Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE Transactions on Power Electronics, 2009, 24 (5): 1198- 1208
doi: 10.1109/TPEL.2009.2013862
18 MAHMOUD Y, EL-SAADANY E Accuracy improvement of the ideal PV model[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (3): 909- 911
doi: 10.1109/TSTE.2015.2412694
19 DING K, BIAN X, LIU H, et al A MATLAB-simulink-based PV module model and its application under conditions of nonuniform irradiance[J]. IEEE Transactions on Energy Conversion, 2012, 27 (4): 864- 872
doi: 10.1109/TEC.2012.2216529
[1] 张勇,潘神功,刘水长,毛凤朝,王青妤,刘赫,尹艺霏. 全特征扰流元电池液冷板传热优化与实验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1157-1164.
[2] 祝庆伟,吴启超,徐一丹,俞小莉,黄瑞. 镍钴铝锂离子电池在不同SOC区间的老化[J]. 浙江大学学报(工学版), 2023, 57(4): 666-674.
[3] 姜孝男,徐刚,陈卫祥. Z-CoS2-MoS2/rGO的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2022, 56(1): 152-160.
[4] 夏雪,赵震,张晋杰,唐亮. 车用圆柱锂电池及模组的机械完整性[J]. 浙江大学学报(工学版), 2021, 55(11): 2134-2141.
[5] 王帅林,盛雷,齐丽娜,方奕栋,李康,苏林. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992.
[6] 雷克兵,陈自强. 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报(工学版), 2021, 55(10): 1978-1985.
[7] 潘斌,董栋,钱东培,钮树强,刘双宇,姜银珠. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
[8] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[9] 吴佳铭,陈自强. 可变低温环境锂电池组内部短路故障诊断[J]. 浙江大学学报(工学版), 2020, 54(7): 1433-1439.
[10] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[11] 饶蕾, 计春雷. AM0光谱下三结太阳能电池的温度及聚光特性[J]. 浙江大学学报(工学版), 2015, 49(12): 2269-2275.
[12] 王世学,齐贺. 加湿温度对燃料电池性能影响的实验研究[J]. 浙江大学学报(工学版), 2015, 49(11): 2193-2197.
[13] 毛佳妮,江述帆,方奇,鲁进新,刘德一,杜军燕. 新型太阳能温差发电集热体的传热特性[J]. 浙江大学学报(工学版), 2015, 49(11): 2205-2213.
[14] 丁家峰, 罗安, 胡志坤, 王会海, 曹建. 固体氧化物燃料电池的气体检测特性[J]. J4, 2012, 46(6): 1008-1013.
[15] 周洁 ,卢晓啸 ,庞志伟,孙志坚. 基于辐射传输方程的稀土辐射器厚度优化分析[J]. J4, 2012, 46(3): 499-502.