Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2134-2141    DOI: 10.3785/j.issn.1008-973X.2021.11.014
能源与动力工程     
车用圆柱锂电池及模组的机械完整性
夏雪(),赵震,张晋杰,唐亮*()
北京林业大学 工学院,北京 100083
Mechanical integrity of cylindrical automotive lithium-ion batteries and modules
Xue XIA(),Zhen ZHAO,Jin-jie ZHANG,Liang TANG*()
School of Technology, Beijing Forestry University, Beijing 100083, China
 全文: PDF(1299 KB)   HTML
摘要:

为了获取能高效准确探究锂离子电池(LIBs)及模组机械完整性的方法,通过实验探究各荷电状态(SOC)下圆柱锂电池单体在受到不同方向机械外载作用下的机械响应及电化学失效情况. 基于实验结果提出均质化电池单体材料模型,建立具有SOC相关性、各向异性的电池单体模型,并提出适用于该模型的2种电池单体失效力学判据. 基于该单体模型获取2种典型堆积形式下的电池模组模型,并提出基于该细致模组模型的均质化建模方法,进一步提取出特定堆积方式下的电池模组均质化材料模型,建立相应的均质化电池模组模型,并通过电池模组力学加载实验进行验证. 实验结果显示,该均质化电池模组模型能够高效并准确地预测电池模组在复合机械加载条件下的响应.

关键词: 车辆工程锂离子电池电动汽车有限元模型碰撞安全    
Abstract:

In order to provide a highly accessible method to explore the mechanical integrity of automotive cylindrical lithium-ion batteries (LIBs) and battery modules, a series of multidirectional loading tests for LIBs at various states of charge (SOC) were conducted to figure out both mechanical and electrochemical response of the LIBs when subjected to mechanical abuse. An homogeneous material model for battery cells was proposed and mechanical model of single LIB with both SOC dependence and anisotropy was established, in terms of the analytic results of experimental data. Two mechanical short-circuit criteria, practical for above-mentioned single LIB model, were proposed and calibrated. Detailed battery module models of two specific packing modes were established based on the single battery model. Homogenization method of the detailed battery module model was illustrated and homogeneous battery module material model was developed. According to the homogeneous material model, homogeneous battery module models of two different packing modes were developed and verified by the mechanical loading experiments of the battery modules. Experimental results show that this homogeneous battery module can predict the performance under multi-direction mechanical abuse precisely with less computing effort.

Key words: automotive engineering    lithium-ion battery    electric vehicle    finite element model    crash safety
收稿日期: 2020-10-22 出版日期: 2021-11-05
CLC:  TM 912  
基金资助: 中央高校基本科研业务费专项资金资助项目(2021ZY69);国家自然科学基金资助项目(51975057);湖北省重点实验室2021 年开放课题资助项目(XDQCKF2021004)
通讯作者: 唐亮     E-mail: xiaxue_buaa@163.com;happyliang@bjfu.edu.cn
作者简介: 夏雪(1994—),女,硕士生,从事锂离子电池机械完整性研究. orcid.org/0000-0003-3656-3254. E-mail: xiaxue_buaa@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
夏雪
赵震
张晋杰
唐亮

引用本文:

夏雪,赵震,张晋杰,唐亮. 车用圆柱锂电池及模组的机械完整性[J]. 浙江大学学报(工学版), 2021, 55(11): 2134-2141.

Xue XIA,Zhen ZHAO,Jin-jie ZHANG,Liang TANG. Mechanical integrity of cylindrical automotive lithium-ion batteries and modules. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2134-2141.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.014        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2134

图 1  4种典型机械滥用实验的实验结果
图 2  电池单体均值材料应力-应变曲线拟合及其与SOC相关性参数表征
图 3  4种典型加载工况下电池单体模型的仿真结果验证
模型 S/mm N t/s
均质化电池单体 4.0 16 42
独立电池壳+均质化电芯模型 2.5 16 212
细致化电池模型 0.3~0.8 16 43200
表 1  各种电池单体建模方式所需算力
图 4  2种典型堆积形式的几何示意图与有限元模型:立方最密堆积与六方最密堆积
图 5  2种不同模组压缩实验的实验装置及细致化电池模组模型仿真结果验证
图 6  2种典型堆积下的压缩载荷模拟实验的真实应力-应变曲线
图 7  2种典型堆积形式模组在受限压缩载荷下的实验和模拟结果对比
1 ABABA S, MARLAIR G, LECOCQ A, et al Safety focused modeling of lithium-ion batteries: a review[J]. Journal of Power Sources, 2016, 306 (11): 178- 192
2 LU L, HAN X, LI J, et al A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226 (10): 272- 288
3 BALOGUN M S, LUO Y, QIU W, et al A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2015, 98 (9): 162- 178
4 WANG L, YIN S, ZHANG C, et al Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 392 (5): 265- 273
5 ZHANG J N, LI Q, WANG Y, et al Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode [J]. Energy Storage Materials, 2017, 14 (2): 1- 7
6 LIN C, TANG A, MU H, et al. Aging mechanisms of electrode materials in lithium-ion batteries for electric vehicles[EB/OL]. (2015-06-21). https://doi.org/10.1155/2015/104673.
7 XU J, WANG L, GUAN J, et al Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium-ion batteries[J]. Materials and Design, 2016, 95 (1): 319- 328
8 PEABODY C, ARNOLD C B The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196 (19): 8147- 8153
doi: 10.1016/j.jpowsour.2011.05.023
9 KALNAUS S, KUMAR A, WANG Y, et al Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading[J]. Journal of Power Sources, 2017, 378 (5): 139- 145
10 ZHANG X, SAHRAEI E, WANG K Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327 (7): 693- 701
11 KALNAUS S, WANG Y, TURNER J A Mechanical behavior and failure mechanisms of Li-ion battery separators[J]. Journal of Power Sources, 2017, 348 (3): 255- 263
12 WANG L, YIN S, YU Z, et al Unlocking the significant role of shell material for lithium-ion battery safety[J]. Materials and Design, 2018, 160 (10): 601- 610
13 ZHANG X, WIERZBICKI T Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery[J]. Journal of Power Sources, 2015, 280 (1): 47- 56
14 SAHRAEI E, KAHN M, MEIER J, et al Modelling of cracks developed in lithium-ion cells under mechanical loading[J]. RSC Advances, 2015, 98 (5): 80369- 80380
15 XU J, LIU B, WANG L, et al Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing[J]. Engineering Failure Analysis, 2015, 53 (3): 97- 110
16 WANG L, YIN S, XU J A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset[J]. Journal of Power Sources, 2018, 413 (12): 284- 292
17 LIU B, ZHAO H, YU H, et al Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading[J]. Electrochimica Acta, 2017, 256 (10): 172- 184
18 YUAN C, GAO X, WONG H K, et al A multiphysics computational framework for cylindrical battery behavior upon mechanical loading based on LS-DYNA[J]. Journal of the Electrochemical Society, 2019, 166 (6): 1160- 1169
doi: 10.1149/2.1071906jes
19 LIU B, JIA Y K, LI J, et al Safety issues caused by internal short circuits in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 43 (6): 21475- 21484
20 GAO W K, ZHENG Y, OUYANG M, et al Micro-short circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (3): 2132- 2142
[1] 杜凯,朱国荣,陆江华,庞牧野. 电动汽车无线充电系统金属异物检测方法[J]. 浙江大学学报(工学版), 2022, 56(1): 56-62.
[2] 王帅林,盛雷,齐丽娜,方奕栋,李康,苏林. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992.
[3] 雷克兵,陈自强. 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报(工学版), 2021, 55(10): 1978-1985.
[4] 潘斌,董栋,钱东培,钮树强,刘双宇,姜银珠. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
[5] 尚夏,王美佳,许刘晓,章立辉. 城市区域电动汽车充电设施配置优化[J]. 浙江大学学报(工学版), 2020, 54(6): 1210-1217.
[6] 翁杭建,党晓娟,张晓晶. 错位装配串联蜂窝结构缓冲吸能特性[J]. 浙江大学学报(工学版), 2020, 54(12): 2329-2335.
[7] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[8] 诸葛翰卿,谢旭,廖燕华,唐站站. 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 702-712.
[9] 黄钰期,梅盼,陈晓济,邓长水. 基于CFD分析的电动汽车电池包加热方法[J]. 浙江大学学报(工学版), 2019, 53(2): 207-213.
[10] 王郭俊,许洪国,刘宏飞. 双半挂汽车列车操纵稳定性分析[J]. 浙江大学学报(工学版), 2019, 53(2): 299-306.
[11] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[12] 曾小华,王星琦,宋大凤,杨南南,王振伟. 考虑电池寿命的插电式混合动力汽车能量管理优化[J]. 浙江大学学报(工学版), 2019, 53(11): 2206-2214.
[13] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[14] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[15] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.