Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2329-2335    DOI: 10.3785/j.issn.1008-973X.2020.12.007
机械工程、能源工程     
错位装配串联蜂窝结构缓冲吸能特性
翁杭建1(),党晓娟2,张晓晶1,*()
1. 上海交通大学 航空航天学院,上海 201100
2. 中国航空工业集团公司成都飞机设计研究所,四川 成都 610091
Energy absorption properties of tandem honeycomb with dislocated assembly
Hang-jian WENG1(),Xiao-juan DANG2,Xiao-jing ZHANG1,*()
1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 201100, China
2. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China
 全文: PDF(1427 KB)   HTML
摘要:

为优化串联蜂窝的缓冲吸能效果与增强蜂窝结构的可设计性,通过平压实验与全尺寸有限元模拟研究装配错位对于串联蜂窝结构力学性能的影响. 采用准静态面外压缩实验,对单层蜂窝、双层对位装配蜂窝、双层错位装配蜂窝3种形式的Nomex蜂窝夹层结构进行测试,通过结构变形过程和响应曲线分析变形机理. 实验结果表明,双层串联蜂窝相比单层蜂窝结构可以有效改善蜂窝结构的承载能力和吸能效果. 错位装配使两层蜂窝同时开始变形,相比对位装配能进一步提升平台应力,消除第2个峰值应力,承载能力和吸能效果均有较大提升. 有限元模型通过建立蜂窝细节模拟错位装配效果,模拟与实验结果具有良好的一致性,同时验证了不同材料隔层对串联蜂窝力学性能的影响.

关键词: 串联蜂窝错位装配面外压缩缓冲吸能有限元模型    
Abstract:

The effects of dislocated assembly on the mechanical properties of tandem honeycomb structure were investigated through flatwise compression experiments and full-scale finite element simulation in order to optimize the energy absorption property and enhance the designability of tandem honeycomb structures. Quasi-static out-of-plane compression experiments were carried out on Nomex honeycomb-cored sandwich structures, include three structural forms of single-layer honeycomb, double-layer aligned assembly honeycomb, and double-layer dislocated assembly honeycomb. The deformation processes and the compression response curves of the structures were recorded to analyze the structure deformation mechanism. Experimental results show that the double-layer tandem honeycomb can effectively improve the bearing capacity and the energy absorption property of the honeycomb structure compared to the single-layer honeycomb. Dislocated assembly causes two layers of honeycomb to deform at the same time. Compared with the aligned assembly honeycomb core, dislocated assembly can further increase the plateau stress, eliminate the second peak stress, and greatly improve the bearing capacity and the energy absorption effect. The finite element model which considers the honeycomb core detail was developed to simulate the dislocated assembly effect. The simulation results were in good agreement with the experimental data. The effects of different clapboard materials on the mechanical properties of tandem honeycombs were also verified by the numerical simulation.

Key words: tandem honeycomb    dislocated assembly    out-of-plane compression    energy absorption    finite element model
收稿日期: 2019-11-09 出版日期: 2020-12-31
CLC:  V 257  
通讯作者: 张晓晶     E-mail: whjnuaa@163.com;zhangxj76@sjtu.edu.cn
作者简介: 翁杭建(1995—),男,硕士生,从事夹层结构力学性能研究. orcid.org/0000-0002-5443-4061. E-mail: whjnuaa@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
翁杭建
党晓娟
张晓晶

引用本文:

翁杭建,党晓娟,张晓晶. 错位装配串联蜂窝结构缓冲吸能特性[J]. 浙江大学学报(工学版), 2020, 54(12): 2329-2335.

Hang-jian WENG,Xiao-juan DANG,Xiao-jing ZHANG. Energy absorption properties of tandem honeycomb with dislocated assembly. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2329-2335.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.007        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2329

图 1  蜂窝芯子方向与尺寸
图 2  串联蜂窝错位装配模式俯视图
图 3  各组蜂窝实验试样
方向 E /GPa σy /MPa σcr /MPa εy εcr
横向 4.213 104 158.4 0.035 5 0.242 0
纵向 4.294 103 110.0 0.034 9 0.048 9
表 1  薄膜材料拉伸性能参数
图 4  薄膜拉伸应力应变曲线
图 5  各组蜂窝压缩变形进程
图 6  各组蜂窝结构平均应力-应变曲线
组别 σc /MPa εc Ee /MPa σp /MPa Ea /J
C 1.93 0.022 5 110 1.27 46.88
CW 2.03 0.022 5 106 1.37 50.39
CWC 2.06 0.022 5 112 1.44 52.97
表 2  蜂窝结构实验性能参数
图 7  各组蜂窝结构吸能曲线
图 8  CWC组典型有限元模型
图 9  蜂窝结构实验与有限元变形对比(U3=2 mm)
图 10  蜂窝结构实验与模拟对比
组别 σc /MPa εc σp /MPa Ea /J
C 1.90 0.022 5 0.94 34.33
CW 2.02 0.022 5 1.03 37.26
CWC 2.03 0.022 5 1.12 39.32
表 3  蜂窝结构模拟结果
1 ROY R, NGUYEN K H, PARK Y B, et al Testing and modelling of Nomex? honeycomb sandwich panels with bolt insert[J]. Composite Part B: Engineering, 2014, 56: 762- 769
2 GILIOLI A, SBARUFATTI C, MANES A, et al Compression after impact test (CAI) on Nomex? honeycomb sandwich panels with thin aluminium skins[J]. Composite Part B: Engineering, 2014, 67: 313- 325
doi: 10.1016/j.compositesb.2014.07.015
3 PARK Y, KWEON J, CHOI J Failure characteristics of carbon/BMI-Nomex sandwich joints in various hygrothermal conditions[J]. Composite Part B: Engineering, 2014, 60: 213- 221
doi: 10.1016/j.compositesb.2013.12.035
4 王永宁. 铝蜂窝模型及其在汽车碰撞壁障数值模拟中的运用[D]. 上海: 上海交通大学, 2007.
WANG Yong-ning. Aluminum honeycomb model and its application in numerical simulation of automobile collision barriers [D]. Shanghai: Shanghai Jiao Tong University, 2007.
5 IVA?EZ I, SáNCHEZ-SAEZ S, GARCIA-CASTILLO S K, et al Impact response of repaired sandwich structures[J]. Polymer Composites, 2020, 41 (8): 3014- 3022
doi: 10.1002/pc.25593
6 李鹏, 周云波, 王显会, 等 含蜂窝夹层的V型底部复合装甲仿真研究[J]. 爆破, 2019, 36 (1): 44- 48
LI Peng, ZHOU Yun-bo, WANG Xian-hui, et al Simulation on V-shaped bottom composite armor with honeycomb sandwich[J]. Blasting, 2019, 36 (1): 44- 48
doi: 10.3963/j.issn.1001-487X.2019.01.007
7 曾福明, 杨建中, 朱汪, 等 月球着陆器着陆缓冲性能研究[J]. 航天器工程, 2010, (5): 43- 49
ZENG Fu-ming, YANG Jian-zhong, ZHU Wang, et al Research on landing impact attenuation performance of lunar lander[J]. Spacecraft Engineering, 2010, (5): 43- 49
doi: 10.3969/j.issn.1673-8748.2010.05.008
8 BOOPATHY V R, SRIRAMAN A, ARUMAIKKANNU G Energy absorbing capability of additive manufactured multi-material honeycomb structure[J]. Rapid Prototyping Journal, 2019, 25 (3): 623- 629
doi: 10.1108/RPJ-03-2018-0066
9 李萌, 刘荣强, 罗昌杰, 等 铝蜂窝串联缓冲结构静态压缩仿真与试验研究[J]. 振动与冲击, 2013, 32 (9): 50- 56
LI Meng, LIU Rong-qiang, LUO Chan-jie, et al Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load[J]. Journal of Vibration and Shock, 2013, 32 (9): 50- 56
doi: 10.3969/j.issn.1000-3835.2013.09.010
10 李翔城, 林玉亮, 卢芳云, 等 两种二级铝蜂窝结构缓冲吸能特性研究[J]. 中国测试, 2016, 42 (10): 100- 106
LI Xiang-cheng, LIN Yu-liang, LU Fang-yun, et al Studies on buffering and energy-absorption of two bilayer aluminum honeycomb structures[J]. China Measurement and Test, 2016, 42 (10): 100- 106
doi: 10.11857/j.issn.1674-5124.2016.10.019
11 WANG Z, LIU J, LU Z, et al Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites Part B: Engineering, 2017, 114: 128- 138
doi: 10.1016/j.compositesb.2017.01.018
12 王中钢, 鲁寨军 铝蜂窝异面压缩吸能特性实验评估[J]. 中南大学学报: 自然科学版, 2013, 44 (3): 1246- 1251
WANG Zhong-gang, LU Zhai-jun Experimental evaluation of energy absorption characteristics of aluminum honeycomb under different surface compression[J]. Journal of Central South University: Natural Science, 2013, 44 (3): 1246- 1251
13 ZHOU H, XU P, XIE S, et al Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs[J]. Composite Structures, 2018, 185: 524- 536
doi: 10.1016/j.compstruct.2017.11.059
14 GIBSON L J, ASHBY M F. Cellular solids: structures and properties [M]. Cambridge: Cambridge University Press, 1997.
15 LIU L, FENG H, TANG H, et al Impact resistance of Nomex honeycomb sandwich structures with thin fibre reinforced polymer facesheets[J]. Journal of Sandwich Structures and Materials, 2018, 20 (5): 531- 552
16 Hexcel Composites. HexWeb honeycomb attributes and properties [M]. Stamford: Hexcel Corporation, 1999.
17 H?HNEL F, WOLF K. Evaluation of the material properties of resin-impregnate Nomex? paper as basis for the simulation of the impact behaviour of honeycomb sandwich [C]// Third international conference on composite testing and model identification 2006, Portugal: CompTest, 2006: 168-169.
18 ROY R, PARK S J, KWEON J H, et al Characterization of Nomex honeycomb core constituent material mechanical properties[J]. Composite Structures, 2014, 117: 255- 266
doi: 10.1016/j.compstruct.2014.06.033
19 KIM S J, JANG H Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp[J]. Tribology International, 2000, 33 (7): 477- 484
doi: 10.1016/S0301-679X(00)00087-6
20 LIU L, WANG H, GUAN Z Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading[J]. Composite Structures, 2015, 121: 304- 314
doi: 10.1016/j.compstruct.2014.11.034
21 XU S, BEYNON J H, RUAN D, et al Strength enhancement of aluminum honeycombs caused by entrapped air under dynamic out-of-plane compression[J]. International Journal of Impact Engineering, 2012, 47: 1- 13
doi: 10.1016/j.ijimpeng.2012.02.008
[1] 诸葛翰卿,谢旭,廖燕华,唐站站. 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 702-712.
[2] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[3] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[4] 胡剑虹,唐志峰,吕福在,潘晓弘,韩烨,姜晓勇. 复合管道轴对称导波改进半解析有限元建模[J]. 浙江大学学报(工学版), 2015, 49(1): 116-122.
[5] 展永政, 王光庆. 压电振动能量采集器的性能分析与功率优化[J]. 浙江大学学报(工学版), 2014, 48(7): 1248-1253.
[6] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[7] 潘骁宇,谢旭,李晓章,孙文智,朱汉华. 锈蚀高强度钢丝的力学性能与评级方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1917-1924.
[8] 牛辉,汪劲丰,张仪萍,张治成,俞亚南. 空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J]. J4, 2013, 47(7): 1205-1212.
[9] 钱治宏, 陶伟明, 杨兴旺. 多铁性复合材料非理想界面的模拟及其影响[J]. J4, 2012, 46(5): 935-940.
[10] 赵章荣 邬义杰 顾新建 徐君 葛荣杰. 超磁致伸缩执行器的三维非线性动态有限元模型[J]. J4, 2008, 42(2): 203-208.
[11] 王刚 王福建 申永刚 曾进忠. 双层连续组合梁弹塑性状态的界面滑移[J]. J4, 2008, 42(11): 2023-2027.
[12] 董辉跃 柯映林 成群林. 铝合金三维铣削加工的有限元模拟与分析[J]. J4, 2006, 40(5): 759-762.
[13] 董辉跃 柯映林 杨慧香. 薄壁板高速铣削加工过程中的让刀误差预测[J]. J4, 2006, 40(4): 634-637.