Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 702-712    DOI: 10.3785/j.issn.1008-973X.2019.04.011
土木工程、海洋工程     
横桥向地震作用对钢拱桥地震损伤发展的影响
诸葛翰卿1(),谢旭1,*(),廖燕华1,唐站站2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 扬州大学 建筑科学与工程学院,江苏 扬州 225127
Effect of transverse earthquake action on development of seismic damage of steel arch bridges
Han-qing ZHUGE1(),Xu XIE1,*(),Yan-hua LIAO1,Zhan-zhan TANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
 全文: PDF(2079 KB)   HTML
摘要:

为了研究横桥向地震作用对钢拱桥结构地震损伤发展的影响,以一座实际中承式钢拱桥为对象,建立考虑损伤区局部变形影响的全桥混合有限元(FE)模型. 通过对结构进行不同峰值加速度地震作用下的弹塑性地震反应计算,对比分析在空间三维地震作用和仅在桥梁面内地震作用下钢拱桥的损伤发展情况. 结果表明,横桥向地震动输入虽然不改变钢拱桥面内的位移时程响应及地震塑性损伤区域的分布位置,但会增大钢板发生局部变形的程度并加速焊接节点超低周疲劳损伤的发展,从而增大结构发生局部失稳破坏和超低周疲劳破坏的可能性. 在钢拱桥的抗震设计中宜同时考虑3个方向的地震作用,以确保结构的抗震安全.

关键词: 中承式钢拱桥空间三维地震作用混合有限元模型钢板局部变形超低周疲劳损伤    
Abstract:

A real half-through steel arch bridge was considered as an example in order to analyze the influence of transverse earthquake action on the seismic damage development of steel arch bridges. A full-bridge hybrid finite element (FE) model considering local deformation effect in the damaged zone was constructed. Damage development of the steel arch bridge under three-dimensional and in-plane earthquake actions were compared according to elastoplastic seismic response calculation results under seismic loads with different peak accelerations. Results show that input of transverse ground motion will not change the in-plane displacement response and the location of plastic damaged zone of the steel arch bridge, but will increase the degree of local deformation of steel plates and accelerate the development of ultra-low-cycle fatigue damage at welded joints, thus increase the risk of localized instability and ultra-low-cycle fatigue failure of the structure. Three-dimensional earthquake actions should be considered to ensure the seismic safety of structures in the seismic design for steel arch bridges.

Key words: half-through steel arch bridge    three-dimensional seismic load    hybrid finite element model    local deformation of steel plate    ultra-low-cycle fatigue damage
收稿日期: 2018-03-27 出版日期: 2019-03-28
CLC:  U 448  
通讯作者: 谢旭     E-mail: 11512058@zju.edu.cn;xiexu@zju.edu.cn
作者简介: 诸葛翰卿(1993—),男,博士生,从事桥梁抗震研究. orcid.org/0000-0002-1856-7115. E-mail: 11512058@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
诸葛翰卿
谢旭
廖燕华
唐站站

引用本文:

诸葛翰卿,谢旭,廖燕华,唐站站. 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 702-712.

Han-qing ZHUGE,Xu XIE,Yan-hua LIAO,Zhan-zhan TANG. Effect of transverse earthquake action on development of seismic damage of steel arch bridges. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 702-712.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.011        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/702

图 1  中承式钢拱桥概况
图 2  钢拱桥的主要截面形式
图 3  中承式钢拱桥地震反应分析模型
$E_{\rm st}^{\rm P}$/GPa $\varepsilon _{\rm st}^{\rm P}$ M $E_{0i}^{\rm P}$/GPa ω/MPa?1 ${\overline \kappa _0}$/MPa σu/MPa
4.47 1.53×10?2 ?0.142 1.43 1.61×10?2 412.2 636.4
ζ e f0/GPa a b c α
307.4 470 0.53 ?0.358 21.4 1.03 0.343
表 1  Q345qC钢材的修正双曲面模型主要参数[20]
图 4  拱桥主要截面的纤维条划分情况
模态 f/Hz X Y Z
有效质量率 累积质量率 有效质量率 累积质量率 有效质量率 累积质量率
1 0.657 0.14 0.14 0.00 0.00 0.00 0.00
2 0.875 0.00 0.14 0.89 0.89 0.00 0.00
3 1.083 0.00 0.14 0.00 0.89 0.00 0.00
4 1.235 0.00 0.14 0.00 0.89 0.30 0.30
5 1.544 0.00 0.14 0.01 0.90 0.00 0.30
6 1.582 0.50 0.64 0.00 0.90 0.00 0.30
7 1.642 0.00 0.64 0.00 0.90 0.00 0.30
8 1.736 0.00 0.64 0.00 0.90 0.60 0.90
9 2.062 0.00 0.64 0.00 0.90 0.01 0.91
10 2.121 0.00 0.64 0.01 0.91 0.00 0.91
11 2.231 0.00 0.64 0.00 0.91 0.00 0.91
12 2.459 0.00 0.64 0.00 0.91 0.00 0.91
13 2.588 0.00 0.64 0.09 1.00 0.00 0.91
14 2.749 0.30 0.94 0.00 1.00 0.00 0.91
15 3.127 0.00 0.94 0.00 1.00 0.09 1.00
表 2  中承式钢拱桥自振特性
顺桥向卓越振型 横桥向卓越振型
表 3  钢拱桥顺桥向和横桥向卓越振型
图 5  输入地震波及反应谱
图 6  1/4跨拱肋动轴力时程响应(PGA=6 m/s2)
图 7  1/4跨拱肋处位移时程响应(PGA=6 m/s2)
图 8  板壳单元段地震塑性区域分布
图 9  最大位移响应时刻地震塑性区的局部变形
图 10  随机反复荷载下的半循环塑性应变范围
图 11  超低周疲劳试样尺寸
图 12  母材试样和焊接试样加载及量测示意图
图 13  母材及焊接试样塑性应变-寿命曲线
材料 k C
母材 0.655 0 1.043 9
焊接 0.678 6 0.761 8
表 4  Coffin-Manson公式材料参数
材料 ${\rm VGI}_{\rm mon}^{\rm cri} $ λ l*/mm
下限 平均值 上限
母材 2.55 0.20 0.087 0.201 0.473
焊材 2.63 0.25 0.062 0.202 0.311
热影响区 2.53 0.33 0.072 0.329 0.671
表 5  Q345钢材CVGM微观断裂判据参数[33]
σ|0/MPa Q/MPa biso Ckin,i/MPa
391.2 21 10 1 800
γ1 γ2 γ3 γ4
245 155 50 30
表 6  Q345qC钢材的Chaboche混合强化模型参数
图 14  超低周疲劳验算的局部模型
图 15  热影响区计算单元VGI演化过程
图 16  2种预测方法得到的单元超低周疲劳损伤指标发展过程
1 KAWASHIMA K, UNJOH S The damage of highway bridges in the 1995 Hyogo-Ken Nanbu earthquake and its impact on Japanese seismic design[J]. Journal of Earthquake Engineering, 1997, 1 (3): 505- 541
2 USAMI T. Guidelines for seismic and damage control design of steel arch bridges [M]. Tokyo: Gihodo Shuppan Co. Ltd., 2007.
3 GAO S, USAMI T, GE H Ductility evaluation of steel bridge piers with pipe-sections[J]. Journal of Engineering Mechanics, 1998, 124 (3): 260- 267
doi: 10.1061/(ASCE)0733-9399(1998)124:3(260)
4 USAMI T, GE H Cyclic behavior of thin-walled steel structures: numerical analysis[J]. Thin-Walled Structure, 1998, 32 (1-3): 41- 80
doi: 10.1016/S0263-8231(98)00027-5
5 USAMI T, GE H, GAO S Stiffened steel box columns. Part 2: ductility evaluation[J]. Earthquake Engineering and Structural Dynamics, 2000, 29 (11): 1707- 1722
6 WATANABE E, SUGIURA K, OYAWA W O Effects of multi-directional displacement paths on the cyclic behavior of rectangular hollow steel column[J]. Journal of Structural Engineering and Earthquake Engineering, 2000, 17 (1): 79- 94
7 DANG J, NAKAMURA T, AOKI T, et al Bi-directional loading hybrid test of square section steel piers[J]. Journal of Structural Engineering, 2010, 56A: 367- 380
8 GOTO Y, JIANG K, OBATA M Stability and ductility of thin-walled circular steel columns under cyclic bidirectional loading[J]. Journal of Structural Engineering, 2006, 132 (10): 1621- 1631
doi: 10.1061/(ASCE)0733-9445(2006)132:10(1621)
9 GOTO Y, MURAKI K, OBATA M Ultimate state of thin-walled circular steel columns under bidirectional seismic accelerations[J]. Journal of Structural Engineering, 2009, 135 (12): 1481- 1490
doi: 10.1061/(ASCE)ST.1943-541X.0000076
10 GOTO Y, JIANG K, OBATA M Hysteretic behavior of thin-walled stiffened rectangular steel columns under cyclic bi-axial loading[J]. Journal of Japan Society of Civil Engineers, 2007, 63 (1): 122- 141
11 GOTO Y, KOYAMA R, FUJII Y, et al Ultimate state of thin-walled stiffened rectangular steel columns under bi-directional seismic excitations[J]. Journal of Japan Society of Civil Engineers, 2009, 65 (1): 61- 80
12 NONAKA T, ALI A Dynamic response of half-through steel arch bridge using fiber model[J]. Journal of Bridge Engineering, 2001, 6 (6): 482- 488
doi: 10.1061/(ASCE)1084-0702(2001)6:6(482)
13 USAMI T, LU Z, GE H, et al Seismic performance evaluation of steel arch bridges against major earthquakes. Part 1: dynamic analysis approach[J]. Earthquake Engineering and Structural Dynamics, 2004, 33 (14): 1337- 1354
doi: 10.1002/(ISSN)1096-9845
14 LU Z, USAMI T, GE H, Seismic performance evaluation of steel arch bridges against major earthquakes Part 2: simplified verification procedure[J]. Earthquake Engineering and Structural Dynamics, 2010, 33 (14): 1355- 1372
15 CETINKAYA O T, NAKAMUR S, TAKAHASHI K Expansion of a static analysis-based out-of-plane maximum inelastic seismic response estimation method for steel arch bridges to in-plane response estimation[J]. Engineering Structures, 2009, 31 (9): 2209- 2212
doi: 10.1016/j.engstruct.2009.02.045
16 谢旭, 唐站站, 胡欣科, 等 纤维模型在钢拱桥抗震设计中的适用性研究[J]. 中国公路学报, 2015, 28 (2): 33- 42
XIE Xu, TANG Zhan-zhan, HU Xin-ke, et al Study on application of fiber model In seismic design for steel arch bridge[J]. China Journal of Highway and Transport, 2015, 28 (2): 33- 42
doi: 10.3969/j.issn.1001-7372.2015.02.005
17 JTG D64-2015, 公路钢结构桥梁设计规范[S]. 北京: 人民交通出版社, 2015.
18 SHEN C, MIZUNO E, USAMI T A generalized two-surface model for structural steels under cyclic loading[J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 1993, 471 (I-2): 23- 33
19 SHEN C, MAMAGHANI I, MIZUNO E, et al Cyclic behavior of structural steel, II: theory[J]. Journal of Engineering Mechanics, ASCE, 1995, 121 (11): 1165- 1172
doi: 10.1061/(ASCE)0733-9399(1995)121:11(1165)
20 王彤. 桥梁结构钢材滞回本构模型改进及其应用研究[D]. 杭州: 浙江大学, 2016.
WANG Tong. Improvement of the hysteresis constitutive model of bridge structure steel and its application [D]. Hangzhou: Zhejiang University, 2016.
21 CHEN W, DUAN L. Bridge engineering handbook: Seismic design[M]. Boca Raton: CRC Press, 2014.
22 日本道路协会. 日本道路桥示方书(抗震设计篇)[S]. 东京: 丸善出版株式会社, 2017.
23 CJJ 166-2011, 城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011.
24 GE H, TSUMURA Y Experimental and analytical study on the evaluation of ductile crack initiation in steel bridge piers[J]. Journal of Structural Engineering, 2004, 50A: 1427- 1436
25 GE H, LUO X A seismic performance evaluation method for steel structures against local buckling and extra-low cycle fatigue[J]. Journal of Earthquake and Tsunami, 2011, 5 (2): 83- 99
doi: 10.1142/S1793431111001005
26 GE H, KANG L Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading[J]. Engineering Structures, 2014, 59: 809- 820
doi: 10.1016/j.engstruct.2013.12.006
27 TATEISHI K, HANJI T Low cycle fatigue strength of butt-welded steel joint by means of new testing system with image technique[J]. International Journal of Fatigue, 2004, 26 (12): 1349- 1356
doi: 10.1016/j.ijfatigue.2004.03.016
28 TATEISHI K, HANJI T, MINAMI K A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29 (5): 887- 896
doi: 10.1016/j.ijfatigue.2006.08.001
29 KANVINDE A, DEIERLEIN G Void growth model and stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132 (12): 1907- 1918
doi: 10.1061/(ASCE)0733-9445(2006)132:12(1907)
30 KANVINDE A, DEIERLEIN G Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133 (6): 701- 712
doi: 10.1061/(ASCE)0733-9399(2007)133:6(701)
31 ZHOU H, WANG Y, SHI Y, et al Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48 (2): 90- 100
32 廖燕华. 钢桥焊接节点超低周疲劳性能与断裂机理研究[D]. 杭州: 浙江大学, 2018.
LIAO Yan-hua. Research on ultra low cycle fatigue properties and fracture mechanism of steel bridge welded joint [D]. Hangzhou: Zhejiang University, 2018.
33 LIAO F, WANG W, CHEN Y Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42 (2): 153- 174
doi: 10.12989/sem.2012.42.2.153
[1] 余文韬,谢旭,成程. 焊接构造对T型接头超低周疲劳性能的影响[J]. 浙江大学学报(工学版), 2021, 55(1): 31-37.
[2] 戴显荣,王路,王昌将,王晓阳,沈锐利. 多塔悬索桥全竖向摩擦板式抗滑方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1697-1703.
[3] 鲁乃唯, 罗媛, 汪勤用, Noori Mohammad. 车载下大跨度桥梁动力可靠度评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2328-2335.
[4] 肖新辉,鲁乃唯, 刘扬. 随机车流下公路钢桥疲劳可靠度分析[J]. 浙江大学学报(工学版), 2016, 50(9): 1777-1783.
[5] 王城泉, 申永刚, 王岗, 谢旭. 空心板梁桥桥面连续构造的受力特性试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1438-1445.
[6] 刘扬,张海萍,邓扬,李明. 考虑车辆超载的公路简支梁桥疲劳性能[J]. 浙江大学学报(工学版), 2015, 49(11): 2172-2178.
[7] 王岗, 谢旭, 王城泉, 申永刚. 简支梁桥拱型桥面连续构造的受力性能[J]. 浙江大学学报(工学版), 2014, 48(6): 1049-1057.
[8] 王彤, 谢旭, 王渊, 史鹏程. 桁腹式组合桁梁结构计算理论[J]. J4, 2014, 48(4): 711-720.
[9] 袁佩,谢旭,申永刚. 考虑减振装置影响的拱桥吊杆张力测试方法及应用[J]. J4, 2012, 46(9): 1592-1598.
[10] 黄海燕,谢旭,吴冬雁,王荣富,王渊. 预应力混凝土部分斜拉桥的阻尼特性[J]. J4, 2012, 46(5): 804-810.
[11] 谢旭, 李季隆, 赵俊亮, 张鹤, 山下幹夫. 基于遗传算法的车辆参数识别方法[J]. J4, 2010, 44(9): 1818-1824.
[12] 谢旭, 吴冬雁, 王建峰, 等. 伸缩缝车辆冲击引起的钢箱梁桥振动特性[J]. J4, 2009, 43(10): 1923-1930.