Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1157-1164    DOI: 10.3785/j.issn.1008-973X.2023.06.011
机械工程     
全特征扰流元电池液冷板传热优化与实验研究
张勇1(),潘神功1,刘水长1,*(),毛凤朝1,王青妤1,刘赫1,尹艺霏2
1. 湖南工业大学 机械工程学院,湖南 株洲 412007
2. 湖南汽车工程职业学院 车辆运用学院,湖南 株洲 412007
Optimization and experimental study of heat transfer in liquid-cooled plate of full-featured disturbance element cells
Yong ZHANG1(),Shen-gong PAN1,Shui-chang LIU1,*(),Feng-zhao MAO1,Qing-yu WANG1,He LIU1,Yi-fei YIN2
1. School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
2. School of Vehicle Operation, Hunan Automotive Engineering Vocational College, Zhuzhou 412007, China
 全文: PDF(1832 KB)   HTML
摘要:

低热阻、低压损和均匀温度的液冷板对保障动力电池包续航里程、延缓电芯寿命衰减具有重要意义. 以改善液冷板传热性能为目标,以某款动力电池包液冷板为对象,构建温度均匀性系数,提出新型全特征扰流元模型. 开展扰流元特征参数和布置参数寻优,搭建液冷板传热实验台架,验证温度和压降仿真结果的准确性. 结果表明:当扰流元的结构宽度与长度之比为1、扰流元的结构宽度与流道宽度之比为0.5、2个扰流元间隔为15 mm时,液冷板综合性能最佳. 优化后液冷板温度均匀性系数由0.339降到0.121,优化幅度为180.16%;优化后液冷板最高温度为24.7 ℃,温差为3 ℃,仿真计算结果与实验结果的综合误差为3.79%.

关键词: 动力电池包液冷板全特征扰流元温度均匀性系数强化传热    
Abstract:

A liquid-cooled plate with low thermal resistance, low-pressure loss and uniform temperature is important to guarantee the range of the power battery pack and delay the decay of cell life. To improve the heat transfer performance of the liquid-cooled plate, a power battery pack liquid-cooled plate was used as the object, the temperature uniformity coefficient was constructed, and a new full-featured disturbance element model was proposed. The characteristic parameters and arrangement parameters of the disturbance element were optimized, and a liquid-cooled plate heat transfer experimental rig was built to verify the accuracy of the simulation results of the temperature and pressure drop. Results showed that when the ratio of width to length of the disturbance element structure was 1, the ratio of disturbance element structure width to runner width was 0.5, and the interval between two disturbance elements was 15 mm, the comprehensive performance of the liquid-cooled plate was optimal. After optimization, the temperature uniformity coefficient of the liquid-cooled plate was reduced from 0.339 to 0.121, with an optimization range of 186.03%; the maximum temperature of the liquid-cooled plate after optimization was 24.7 ℃, with a temperature difference of 3 ℃, and the comprehensive error between simulation calculation results and experimental results was 3.79%.

Key words: power battery pack    liquid-cooled plate    full-featured disturbance element    temperature uniformity coefficient    strengthening heat transfer
收稿日期: 2022-09-22 出版日期: 2023-06-30
CLC:  TM 912  
基金资助: 湖南省重点研发项目(2022GK2065);湖南省教育厅科学研究重点项目(20A157,18A258);湖南省科技创新计划资助项目(2021RC4065)
通讯作者: 刘水长     E-mail: 289714423@qq.com;834130255@qq.com
作者简介: 张勇(1979—),男,副教授,博士后,从事车辆工程研究. orcid.org/0009-0008-0807-9143. E-mail: 289714423@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张勇
潘神功
刘水长
毛凤朝
王青妤
刘赫
尹艺霏

引用本文:

张勇,潘神功,刘水长,毛凤朝,王青妤,刘赫,尹艺霏. 全特征扰流元电池液冷板传热优化与实验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1157-1164.

Yong ZHANG,Shen-gong PAN,Shui-chang LIU,Feng-zhao MAO,Qing-yu WANG,He LIU,Yi-fei YIN. Optimization and experimental study of heat transfer in liquid-cooled plate of full-featured disturbance element cells. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1157-1164.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.011        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1157

图 1  原始液冷板模型
图 2  单体电芯发热量实验
图 3  液冷板与加热膜实物图
材料 ρ/(kg·m-3) c/(J·kg?1?K?1) K/(W·m?2?K?1) v/(m·s?1)
热源 1 300 1 973 150
液冷板 2 700 900 209
冷却介质 997 4 181 0.62 0.25
表 1  仿真材料的热物性参数
图 4  监测单元位置布局图
图 5  原始液冷板的散热云图
图 6  全特征扰流元的结构
图 7  含扰流元的流道单体几何模型
图 8  扰流元的长宽比与湍流强度、流道压降的变化关系
图 9  当扰流元的长宽比为1时,冷却介质的速度分布云图
图 10  扰流元和流道的宽度比与湍流强度、流道压降的变化关系
图 11  扰流元的尾部回流现象
图 12  当扰流元和流道的宽度比为0.5时,冷却介质的速度分布云图
图 13  扰流元数量与湍流强度、流道压降的变化关系
图 14  扰流元间隔与湍流强度、流道压降的变化关系
图 15  当扰流元间隔为15 mm时,冷却介质的速度分布云图
图 16  全特征扰流元结构的液冷板
图 17  优化后的液冷板散热云图
图 18  液冷板的传热实验平台
图 19  热成像仪拍摄的加热膜散热云图
1 BANDHAUER T M, GARIMELLA S, FULLER T F, et al A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158 (3): R1- R25
doi: 10.1149/1.3515880
2 LI T, ZHANG L, SUN Q, et al Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures [J]. Electrochim Acta, 2013, 111: 802- 808
doi: 10.1016/j.electacta.2013.08.074
3 WRINGHT R B, CHRISTOPHERSEN J P, MOTLOCH C G, et al Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries[J]. Journal of Power Sources, 2003, 119–121: 865- 869
4 LU L G, HAN X B, LI J Q, et al A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272- 288
doi: 10.1016/j.jpowsour.2012.10.060
5 WANG C H, LIN T, HUANG J T, et al Temperature response of a high power lithium-ion battery subjected to high current discharge[J]. Mater Research Innovations, 2015, 19 (Suppl.2): 156- 160
6 SPOTNITZ R, FRANKLIN J Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113 (1): 81- 100
doi: 10.1016/S0378-7753(02)00488-3
7 ROBINSON J B, DARR J A, EASTWOOD D S, et al Nonuniform temperature distribution in Li-ion batteries during discharge: a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach[J]. Journal of Power Sources, 2014, 252: 51- 57
doi: 10.1016/j.jpowsour.2013.11.059
8 曾祥兵, 谢堃, 张伟, 等 新型动力电池热管理系统设计及性能研究[J]. 汽车工程, 2022, 44 (4): 476- 481
ZENG Xiang-bing, XIE Kun, ZHANG Wei, et al Design and performance study of a new type of thermal management system for traction battery[J]. Automotive Engineering, 2022, 44 (4): 476- 481
9 徐晓明. 动力电池热管理技术——散热系统热流场分析 [M]. 北京: 机械工业出版社, 2018
10 SHAOSEN S U, LI W, LI Y S, et al Multi-objective design optimization of battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2021, 196: 117235
doi: 10.1016/j.applthermaleng.2021.117235
11 余剑武, 陈亚玲, 范光辉, 等 锂电池并行流道液冷板结构设计和散热性能分析[J]. 吉林大学学报: 工学版, 2022, 52 (12): 2788- 2795
YU Jian-wu, CHEN Ya-ling, FAN Guang-hui, et al Structure design and thermal dissipation performance analysis of liquid cooling plates with parallel flow channels for lithium batteries[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52 (12): 2788- 2795
12 DENG T, RAN Y, YIN Y L, et al Multi-objective optimization design of thermal management system for lithium-ion battery pack based on non-dominated sorting genetic algorithm II[J]. Applied Thermal Engineering, 2020, 164: 114394
doi: 10.1016/j.applthermaleng.2019.114394
13 FAN Y W, WANG Z H, FU T Multi-objective optimization design of lithium-ion battery liquid cooling plate with double-layered dendritic channels[J]. Applied Thermal Engineering, 2021, 199: 117541
doi: 10.1016/j.applthermaleng.2021.117541
14 WANG J F, LIU X D, LIU F, et al Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery[J]. Case Studies in Thermal Engineering, 2021, 26: 101124
doi: 10.1016/j.csite.2021.101124
15 LI P, LUO Y Y, ZHANG D, et al Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin[J]. International Journal of Heat and Mass Transfer, 2018, 119: 152- 162
doi: 10.1016/j.ijheatmasstransfer.2017.11.112
16 ANDREOZZI A, MANCA O, NARDINI S, et al Forced convection enhancement in channels with transversal ribs and nanofluids[J]. Applied Thermal Engineering, 2016, 98: 1044- 1053
doi: 10.1016/j.applthermaleng.2015.12.140
17 KHAN A A, KIM S M, KIM K Y Performance analysis of a microchannel heat sink with various rib configurations[J]. Journal of Thermophysics and Heat Transfer, 2016, 30 (4): 782- 790
doi: 10.2514/1.T4663
18 LIU J, XIE G, SIMON T W, et al Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves[J]. International Journal of Heat and Mass Transfer, 2015, 81: 563- 577
doi: 10.1016/j.ijheatmasstransfer.2014.10.021
19 XU X M, HE R Review on the heat dissiPation performance of battery pack with different structures and operation conditions[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 301- 315
doi: 10.1016/j.rser.2013.08.057
20 WELTENS H, BRESSIER H, TERRES F, et al Optimization of catalytic converter gas flow distribution by CFD prediction[J]. SAE Technical Paper, 1993, 930780
21 周全, 夏克青. Rayleigh-Bénard对流中温度边界层统计特性的实验研究 [C]// 中国力学学会学术大会'2009论文摘要集. 郑州: [s.n.], 2009: 173-174.
ZHOU Quan, XIA Ke-qing. Experimental study on statistical properties of temperature boundary layer in Rayleigh-Bénard convection [C]// Abstract collection of Papers '2009 Conference of Chinese Society of Mechanics. Zhengzhou: [s.n.], 2009: 173-174.
[1] 王静, 蔡忆昔, 包伟伟, 李慧霞. 离子风强化大功率LED散热的实验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1952-1958.
[2] 肖宝兰, 俞小莉, 钟勋, 韩松, 夏立峰. 纳米流体流动传热性能的实验与模拟研究[J]. J4, 2010, 44(6): 1149-1154.
[3] 钟勋, 俞小莉, 吴俊, 蒋平灶. 氧化铝纳米流体在车用热交换器中的试验研究[J]. J4, 2010, 44(4): 761-764.