Please wait a minute...
浙江大学学报(工学版)
机械与电气工程     
离子风强化大功率LED散热的实验研究
王静, 蔡忆昔, 包伟伟, 李慧霞
江苏大学汽车与交通工程学院,江苏 镇江 212013
Experimental study of high power LEDs enhanced cooling performance by ionic wind
WANG Jing, CAI Yi xi, BAO Wei wei, LI Hui xia
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
 全文: PDF(1131 KB)   HTML
摘要:

设计“针-网”结构的离子风发生器,用于大功率LED芯片散热.分析正、负电晕放电离子风的产生及强化传热机理,通过实验研究不同工况下,芯片引脚温度、系统总热阻、平均换热系数等参数的变化规律.研究结果表明:相同条件下,负电晕放电离子风的散热效果优于正电晕放电,系统总热阻更小,平均换热系数更大;当放电针分布于LED芯片附近时,系统的散热效果更显著;离子风速度随过电压增加而线性增加,并与放电间距成反比;设计的离子风散热系统具有与压电风扇相接近的散热效果,但无运动部件,工作噪音小.

Abstract:

A needles-net structure ionic wind generator was designed for high power LED chip heat dissipation. The mechanism of ionic wind generation under positive (negative) corona discharge and enhanced heat transfer was analyzed. Experiments were conducted to analyze the change rules for LED chip case temperature, the thermal resistance and the mean heat transfer coefficient under different working conditions. Results show that the cooling performance of negative corona discharge ionic wind is superior to the one of positive corona discharge. The system has smaller thermal resistance but bigger mean heat transfer coefficient. The cooling effect of the system is more obvious when the needles are located around the LED chips. The ionic wind increases proportional to the overvoltage but grows in inverse proportion to the discharge distance. The designed ionic wind generator can realize the heat dissipation effect more close to a cooling fan, and has the advantages of small vibration, no noise compared to a cooling fan.

出版日期: 2016-10-28
:  U 463  
基金资助:

江苏省动力机械清洁能源与应用重点实验室开放课题资助项目(QK12001); 江苏大学高级人才科研启动基金资助项目(5503000025); 江苏省高校优势学科建设资助项目.

通讯作者: 蔡忆昔,男,教授,博导.     E-mail: qc001@ujs.edu.cn
作者简介: 王静(1982—),男,讲师,从事LED汽车灯具散热研究. ORCID: 0000-0001-7803-1606. E-mail: jackywang03@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王静, 蔡忆昔, 包伟伟, 李慧霞. 离子风强化大功率LED散热的实验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.10.015.

WANG Jing, CAI Yi xi, BAO Wei wei, LI Hui xia. Experimental study of high power LEDs enhanced cooling performance by ionic wind. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.10.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.10.015        http://www.zjujournals.com/eng/CN/Y2016/V50/I10/1952

[1] WANG J, ZHAO X J, CAI Y X, et al. Experimental study on the thermal management of highpower LED headlight cooling device integrated with thermoelectric cooler package [J]. Energy Conversion and Management, 2015, 101: 532-540.
[2] WANG J, ZHAO X J, CAI Y X, et al. Thermal model design and analysis of highpower LED headlamp cooling device based on the thermoelectric effect [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(5): 641-649.
[3] DAVID B G, RAUL A M, TIMOTHY S F, et al.Enhancement of external forced convection by ionic wind [J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 6047-6053.
[4] CHEN I Y, GUO M Z, YANG K S, et al. Enhanced cooling for LED lighting using ionic wind [J]. International Journal of Heat and Mass Transfer, 2013(57):285-291.
[5] 袁均祥,邱炜,郑程,等.空气放电离子风特性的研究[J].中国电机工程学报,2009, 29(13): 110-116.
YUAN Junxiang, QIU Wei, ZHENG Cheng, et al. Study on characteristics of ionic wind from atmosphere discharge [J]. Proceedings of the CSEE, 2009, 29(13): 110116.
[6] 赵矗,张剑飞,李洪岩,等.离子风强化通道内平板对流传热的数值模拟[J].工程热物理学报,2015, 36(4): 852-855.
ZHAO Chu, ZHANG Jianfei, LI Hongyan, et al. Numerical simulation on convective heat transfer enhancement of a heated plate in a channel by corona wind [J]. Journal of Engineering Thermophysics, 2015, 36(4):852-855.
[7] 吕战竹,赵福令,杨义勇.混粉电火花加工介质击穿及放电通道位形研究[J].大连理工大学学报,2008,48(3): 373-377.
LV Zhanzhu, ZHAO Fuling, YANG Yiyong.Research on dielectric breakdown and discharge channel in powdermixed EDM [J]. Journal of Dalian University of Technology, 2008, 48(3): 373-377.
[8] 徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996: 248-267.
[9] 罗惕乾.流体力学[M].3版.北京:机械工业出版社,2007: 158-164.
[10] DONG H S, JOON S Y, HAN S K. Experimental optimization of ion wind generator with needle to parallel plates for cooling device [J]. International Journal of Heat and Mass Transfer, 2015, 84: 35-45.
[11] ZHAO X J, CAI Y X, WANG J, et al. Thermal model design and analysis of the highpower LED automotive headlight cooling device [J]. Applied Thermal Engineering, 2015(75): 248-258.
[12] LUXEON Altilon汽车前照灯光源\[EB/OL\].\[20150826\].http:∥www.philipslumileds.cn.com/uploads/40/DS66_CNSpdf.
[13] HUANG R T, SHEU W J, WANG C C. Heat transfer enhancement by needlearrayed electrodes: an EHD integrated cooling system [J]. Energy Conversion and Management, 2009(50): 1789-1796.
[14] ZHANG Y, LIU L J, CHEN Y, et al. Characteristics of ionic wind in needletoring corona discharge [J]. Journal of Electrostatics, 2015(74): 15-20.

[1] 付宏勋, 赵又群, 林棻, 杜现斌, 倪新伟. 机械弹性车轮稳态侧偏特性的理论与试验分析[J]. 浙江大学学报(工学版), 2017, 51(2): 344-349.
[2] 葛正, 王维锐, 王俊鼎. 电子机械制动器间隙调整控制策略研究[J]. 浙江大学学报(工学版), 2017, 51(1): 138-144.
[3] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[4] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[5] 程准,鲁植雄,龚佳慧,刁秀永 . 转向系统传递函数的研究及理想传动比获取[J]. 浙江大学学报(工学版), 2016, 50(7): 1276-1283.
[6] 裴晓朋,王国林,周海超,赵璠. 胎面结构设计参数对轮胎振动噪声的影响[J]. 浙江大学学报(工学版), 2016, 50(5): 871-878.
[7] 马浩军,朱绍鹏,俞小莉,许印川,林鼎. 考虑侧倾运动的电动汽车电子差速控制[J]. 浙江大学学报(工学版), 2016, 50(3): 566-573.
[8] 柯俊,史文库,钱琛,李国民,袁可. 复合材料板簧刚度的预测及匹配设计方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2103-2110.
[9] 邱斌斌, 朱绍鹏, 马浩军, 方光明, 应振有, 宁晓斌. 电动车辆驱动控制系统仿真测试平台设计[J]. 浙江大学学报(工学版), 2015, 49(6): 1154-1159.
[10] 邱斌斌,朱绍鹏,马浩军,方光明,应振有,宁晓斌. 电动车辆驱动控制系统仿真测试平台设计[J]. 浙江大学学报(工学版), 2015, 49(2): 4-5.
[11] 唐昉,周晓军,魏燕定. 改善人-车综合性能的变传动比反馈方法[J]. J4, 2014, 48(3): 456-462.
[12] 王泽贵, 裴质明, 郝志勇, 缪勇, 周益, 周观鹏, 田文华.  汽车变速器齿轮啸叫噪声试验[J]. J4, 2013, 47(7): 1307-1312.
[13] 魏春雨, 周晓军, 魏燕定, 黎建军. 汽车驾驶模拟器转向盘能量反馈调节[J]. J4, 2013, 47(2): 244-248.
[14] 张志刚, 周晓军, 李永军, 沈路, 杨富春. 湿式多片换档离合器带排转矩的预测模型[J]. J4, 2011, 45(4): 708-713.
[15] 余跃, 周鸿波, 童水光, 陈新弟. 大客车侧翻耐撞性的结构设计方法[J]. J4, 2011, 45(4): 714-718.