Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
机械弹性车轮稳态侧偏特性的理论与试验分析
付宏勋, 赵又群, 林棻, 杜现斌, 倪新伟
南京航空航天大学 能源与动力学院,江苏 南京 210016
Theoretical and experimental analysis on steady-state cornering properties of mechanical elastic wheel
FU Hong xun, ZHAO You qun, LIN Fen, DU Xian bin, NI Xin wei
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(2314 KB)   HTML
摘要:

为了掌握机械弹性车轮的侧偏特性,对车轮稳态侧偏工况下的力学特性进行理论及试验研究.基于机械弹性车轮结构特点以及刷子建模理论,建立不同侧偏角下车轮稳态侧偏理论模型.利用轮胎动态力学特性试验台架,对车轮样机进行稳态侧偏特性试验分析,得到了车轮侧向力、回正力矩与侧偏角的关系曲线.对比理论模型仿真与样机试验数据,结果表明:车轮稳态侧偏理论模型具有较高的预测精度,能够表达车轮稳态侧偏力学特性.该研究可为改进车轮结构及改善车轮侧偏性能等提供一定的参考.

Abstract:

Theoretical and experimental investigation on mechanical characteristics of steady-state cornering conditions of mechanical elastic wheel was carried out in order to master cornering properties of mechanical elastic wheel.The theoretical modeling process of steady-state cornering with small and large side-slip angle was discussed by fully considering the structure characteristics of mechanical elastic wheel and using the basic theory of brush model. Experimental analysis on steady-state cornering properties of mechanical elastic wheel was carried out by using tire dynamic mechanical properties test bench, and the relationship curves of the lateral force, aligning torque and side-slip angle were obtained. Simulation results of theoretical model were compared with the experimental data. Results show that the established theoretical model of steady-state cornering has high accuracy, and can express mechanical characteristics of steady-state cornering properties of mechanical elastic wheel.This investigation provides certain reference for the improvement of wheel structure and cornering properties.

出版日期: 2017-03-06
CLC:  U 463.34  
基金资助:

总装各部探索研究资助项目|中央高校基本科研业务费专项资金资助项目(NP2016412)|江苏省普通高校研究生科研创新计划资助项目、江苏研究生培养创新工程资助项目(KYLX-15-0254)

通讯作者: 赵又群,男,教授.ORCID: 0000-0002-0996-7061     E-mail: yqzhao@nuoa.edu.cn
作者简介: 付宏勋(1987—),男,博士,从事车辆系统动力学等研究,ORCID: 0000-0003-0889-6721
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

付宏勋, 赵又群, 林棻, 杜现斌, 倪新伟. 机械弹性车轮稳态侧偏特性的理论与试验分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.02.016.

FU Hong xun, ZHAO You qun, LIN Fen, DU Xian bin, NI Xin wei. Theoretical and experimental analysis on steady-state cornering properties of mechanical elastic wheel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.02.016.

[1] 郭孔辉.汽车操纵动力学[M].长春: 吉林科学技术出版社, 1991: 96-98.
[2] 杨欣,许述财,佟金,等.内支撑式RFT零压行走机理分析[J].清华大学学报:自然科学版,2014,54(7):871-876.
YANG Xin, XU Shut cai, TONG Jin, et al. Running mechanism of run-flat tire with inserts in zero pressure[J]. Journal of Tsinghua University: Science and Technology, 2014, 54(7): 871-876.
[3] CHO J R, LEE J H, JEONG K M, et al. Optimum design of run-flat tire insert rubber by genetic algorithm [J]. Finite Elements in Analysis and Design, 2012, 52(7): 60-70.
[4] EJSMONT J, JACKOWSKI J, LUTY W, et al. Analysis of rolling resistance of tires with run flat insert [J]. Key Engineering Materials, 2014, 597: 165-170.
[5] RHYNE T B, THOMPSON R H,CRON S M,et al. Nonpneumatic tire: US, 7201194 B2[P]. 20070410.
[6] FADEL G M, THOMPSON R H,CRON S M,et al. Honeycomb structures for high shear flexure: US, 0030866 A1[P]. 20110210.
[7] SUMMERS J D, FADEL G M,JU J,et al. Shear compliant hexagonal meso-structures having high shear strength and high shear strain: US, 8609220 B2[P]. 20131217.
[8] LI B, ZHAO Y Q, ZANG L G. Closed-form solution of curved beam model of elastic mechanical wheel [J].Journal of Vibroengineering, 2014, 16(8): 3951-3962.
[9] 佟金,杨欣,张伏,等.零压续跑轮胎技术现状与发展[J].农业机械学报, 2007, 38(3): 182-187.
TONG Jin, YANG Xin, ZHANG Fu, et al. Development of run-flat tire technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(3):182-187.
[10] RHYNE T B, CRON S M. Development of a non-pneumatic wheel [J]. Tire Science and Technology, 2006, 34(3): 150-169.
[11] GASMI A, JOSEPH P F, RHYNE T B, et al. Development of a two-dimensional model of a compliant non-pneumatic tire [J]. International Journal of Solids & Structures, 2012, 49(13): 1723-1740.
[12] JU J, SUMMERS J D. Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain [J]. Materials & design, 2011, 32(2): 512-524.
[13] JU J, VEERAMURTHY M, SUMMERS J D, et al. Rolling resistance of a non-pneumatic tire having a porous elastomer composite shear band [J]. Tire Science and Technology, 2013, 41(3): 154-173.
[14] JU J, KIM D M, KIM K. Flexible cellular solid spokes of a non-pneumatic tire [J]. Composite Structures, 2012, 94(8): 2285-2295.
[15] ZHAO Y Q, ZANG L G, CHEN Y Q, et al. Non-pneumatic mechanical elastic wheel natural dynamic characteristics and influencing factors [J]. Journal of Central South University, 2015, 22(5): 1707-1715.
[16] 臧利国,赵又群,李波,等.非充气机械弹性车轮静态径向刚度特性研究[J].兵工学报,2015,36(2):355-362.
ZANG Liguo, ZHAO Youqun, LI Bo, et al. Static radical stiffness characteristics of nonpneumatic mechanical elastic wheel [J]. Acta Armamentarii, 2015, 36(2): 355362.
[17] 付宏勋,赵又群,林棻,等.胎圈结构参数对机械弹性车轮接地压力分布的影响[J].农业工程学报,2015,31(17): 57-64.
FU Hong xun, ZHAO You qun, LIN Fen, et al. Influences of bead structure parameters on contact pressure distribution of mechanical elastic wheel [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 57-64.
[18] PACEJKA H. Tire and vehicle dynamics[M]. London: Butterworth Heinemann, 2006: 93-96.
[19] 刘青,郭孔辉,陈秉聪.轮胎刷子模型分析Ⅰ.稳态侧偏刷子模型[J].农业机械学报,2000, 31(1): 19-22.
LIU Qing, GUO Kong hui, CHEN Bing cong. Review of tire brush models I. steady state cornering brush models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(1): 19-22.

[1] 裴晓朋,王国林,周海超,赵璠. 胎面结构设计参数对轮胎振动噪声的影响[J]. 浙江大学学报(工学版), 2016, 50(5): 871-878.