Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1628-1636    DOI: 10.3785/j.issn.1008-973X.2020.08.023
化学工程     
MoS2/硼掺杂石墨烯的电化学析氢和储锂性能
任王瑜(),侯世成,姜孝男,陈卫祥*()
浙江大学 化学系,浙江 杭州 310027
MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage
Wang-yu REN(),Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN*()
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1274 KB)   HTML
摘要:

为了研发高效低成本的析氢反应(HER)电催化剂和高性能的电化学储锂电极材料,通过一步水热法制备MoS2/硼掺杂石墨烯(MoS2/BG)复合材料. 结果表明,少堆积MoS2纳米片均匀地分散在硼掺杂石墨烯上,并具有较多的无序结构和扩大的层间距. 作为析氢反应电催化剂,MoS2/BG复合材料表现出较高的电催化活性和较低的Tafel斜率(46.3 mV/dec);作为电化学储锂电极材料,MoS2/BG复合材料表现出优异的电化学储锂性能,可逆比容量为1 205 mA·h/g,并具有稳定的循环性能和显著增强的高倍率特性. MoS2/BG复合材料电化学性能优异是由于硼掺杂改变石墨烯的电子性质和表面特性,以及无序结构较多的弱堆积MoS2层均匀地分散在硼掺杂石墨烯表面,增加电催化析氢反应的活性位点和电化学储锂能力,降低电极反应的电子转移阻抗,增强电极反应的动力学性能.

关键词: 二硫化钼(MoS2石墨烯电催化析氢反应电化学储锂    
Abstract:

MoS2/B-doped graphene composites (MoS2/BG) were prepared by one-step hydrothermal method, in order to develop high-efficiency and low-cost electrocatalyst for hydrogen evolution reaction (HER) and high-performance lithium storage electrode material. Results show that the poor-stacked MoS2nanosheets with more disordered structures and expanded interlayer distance are well dispersed on the surface of B-doped graphene sheets. MoS2/BG composite shows high electrocatalytic activity with low Tafel slope (46.3 mV/dec) as HER electrocatalyst. MoS2/BG composite shows excellent lithium storage performance as a lithium storage electrode material. It can exhibit a reversible capacity as high as 1 205 mA·h/g with stable cycle performance and significantly enhanced high rate capability. The excellent electrochemical performance of MoS2/BG composite is due to the fact that boron doping modifies the electronic and surface properties of graphene, and the poor-stacked MoS2layers with more disordered structures are uniformly dispersed on the surface of B-doped graphene, which not only increases the active sites for HER and electrochemical lithium storage capability, but also reduces the electron transfer impedance of the electrode reaction, leading to the enhancement of electrode reaction kinetics.

Key words: molybdenum disulfide (MoS2)    graphene    electrocatalyst    hydrogen evolution reaction (HER)    electrochemical lithium storage
收稿日期: 2019-12-18 出版日期: 2020-08-28
CLC:  TTQ 152  
基金资助: 国家自然科学基金资助项目(21473156);浙江省自然科学基金重点资助项目(LZ17E010001)
通讯作者: 陈卫祥     E-mail: 644890828@qq.com;weixiangchen@zju.edu.cn
作者简介: 任王瑜(1995—),女,硕士生,从事应用电化学研究. orcid.org/0000-0001-5580-4944. E-mail: 644890828@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
任王瑜
侯世成
姜孝男
陈卫祥

引用本文:

任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.

Wang-yu REN,Shi-cheng HOU,Xiao-nan JIANG,Wei-xiang CHEN. MoS2/B-doped graphene for electrochemical hydrogen evolution and lithium storage. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1628-1636.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.023        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1628

图 1  不同样品的XRD图
图 2  不同样品的SEM图
图 3  不同样品的TEM/HRTEM图
图 4  MoS2/BG-2复合材料的XPS图
图 5  不同催化剂电极上HER的极化曲线、Tafel斜率分析以及HER电化学阻抗谱
电极 Rs Rct
MoS2 3.2 1 131
MoS2/G 4.3 339
MoS2/BG-1 4.8 104
MoS2/BG-2 3.6 87
MoS2/BG-5 4.5 152
表 1  电化学阻抗拟合所得HER动力学参数
图 6  不同复合材料电极前3个循环的充放电曲线 (电流密度为100 mA/g)
图 7  不同复合材料电极的充放电循环性能及其倍率特性
1 YAN Y, XIA B Y, GE X M, et al Ultrathin MoS2nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution [J]. ACS Applied Materials and Interfaces, 2013, 5 (24): 12794- 12798
doi: 10.1021/am404843b
2 DU G D, GUO Z P, WANG S Q, et al Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communications, 2010, 46 (7): 1106- 1108
doi: 10.1039/B920277C
3 XIAO J, CHOI D W, COSIMBESCU L, et al Exfoliated MoS2 nanocomposite as an anode material forlithium ion batteries [J]. Chemistry of Materials, 2010, 22 (16): 4522- 4524
doi: 10.1021/cm101254j
4 LI Y G, WANG H L, XIE L M, et al MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2011, 133 (19): 7296- 7299
doi: 10.1021/ja201269b
5 CHANG K, CHEN W X L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries [J]. ACS Nano, 2011, 5 (6): 4720- 4728
doi: 10.1021/nn200659w
6 YAN Y, GE X M, LIU Z L, et al Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction [J]. Nanoscale, 2013, 5 (17): 7768- 7771
doi: 10.1039/c3nr02994h
7 侯世成, 任王瑜, 朱清, 等 Ni 掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性 [J]. 浙江大学学报:工学版, 2019, 53 (8): 1610- 1617
HOU Shi-cheng, REN Wang-yu, ZHU Qing, et al Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction [J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1610- 1617
8 DUAN J J, CHEN S, JARONIEC M, et al Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catalysis, 2015, 5 (9): 5207- 5234
doi: 10.1021/acscatal.5b00991
9 REN X P, REN X D, PANG L Q, et al MoS2/sulfur and nitrogen co-doped reduced graphene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy, 2016, 41 (2): 916- 923
doi: 10.1016/j.ijhydene.2015.11.114
10 YE J B, YU Z T, CHEN W X, et al Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage[J]. Carbon, 2016, 107: 711- 722
doi: 10.1016/j.carbon.2016.06.074
11 HAN J, ZHANG L L, LEE S, et al Generation of b-doped graphene nanoplatelets using a solution process and their supercapacitor applications[J]. ACS Nano, 2013, 7 (1): 19- 26
doi: 10.1021/nn3034309
12 SHENG Z H, GAO H L, BAO W J, et al Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J]. Journal of Materials Chemistry, 2012, 22 (2): 390- 395
doi: 10.1039/C1JM14694G
13 KONG X K, HUANG Y M, LIU Q C Two-dimensional boron-doped graphyne nanosheet: a new metal-free catalyst for oxygen evolution reaction[J]. Carbon, 2017, 123: 558- 564
doi: 10.1016/j.carbon.2017.08.003
14 SAHOO M, SREENA K P, VINAYAN B P, et al Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Materials Research Bulletin, 2015, 61: 383- 390
doi: 10.1016/j.materresbull.2014.10.049
15 SATHE B R, ZOU X X, ASEFA T Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction[J]. CatalysisScience and Technology, 2014, 4 (7): 2023- 2030
doi: 10.1039/C4CY00075G
16 YE J B, YU Z T, CHEN W X, et al Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: an enhanced electrochemical hydrogen evolution catalyst[J]. International Journal of Hydrogen Energy, 2016, 41 (28): 12049- 12061
doi: 10.1016/j.ijhydene.2016.05.186
17 PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K, et al Synthesis, structure, and properties of boron- and nitrogen-doped graphene[J]. Advanced Materials, 2009, 21: 4726- 4730
18 WANG Q, XIE Z Y, LIANG Y L, et al Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance[J]. Ionic, 2019, 25 (5): 2111- 2119
doi: 10.1007/s11581-018-2647-7
19 侯世成, 任王瑜, 朱清, 等 Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性 [J]. 浙江大学学报: 工学版, 2019, 53 (8): 1610- 1617
HOU Shi-cheng, REN Wang-yu, ZHU Qing, et al Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction [J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1610- 1617
doi: 10.3785/j.issn.1008-973X.2019.08.020
20 WANG D Z, ZHANG X Y, BAO S Y, et al Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution [J]. Journal of Materials Chemistry A, 2017, 5 (6): 2681- 2688
doi: 10.1039/C6TA09409K
[1] 吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.
[2] 侯世成,任王瑜,朱清,陈卫祥. Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性[J]. 浙江大学学报(工学版), 2019, 53(8): 1610-1617.
[3] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[4] 肖丙刚,谢治毅,孙润亮. 基于石墨烯的隔离器理论设计与分析[J]. 浙江大学学报(工学版), 2015, 49(1): 42-47.
[5] 王晓,姚晓莉,候鉴峰,范利武,徐旭,俞自涛,胡亚才. 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报(工学版), 2014, 48(7): 1272-1277.
[6] 吴改, 程 军, 张梦, 周俊虎, 岑可法. 太阳能光电催化还原CO2的最新研究进展[J]. J4, 2013, 47(4): 680-686.
[7] 赵杰, 黄思玉, 陈卫祥. PtRu/C和PtNi/C催化剂合成及其对甲醇氧化的电催化性能[J]. J4, 2009, 43(5): 962-967.
[8] 黄思玉 赵杰 陈卫祥 徐铸德. 空心PtCo/CNTs催化剂的合成及其电催化性能[J]. J4, 2008, 42(7): 1218-1222.
[9] 俞贵艳 陈卫祥 赵杰 徐铸德. PtNi/C催化剂的合成及其对甲醇氧化的电催化性能[J]. J4, 2007, 41(12): 2107-2111.
[10] 丛燕青 马香娟 李玉琼 吴祖成. 光电一体化处理杀扑磷农药废水[J]. J4, 2006, 40(4): 647-651.