流体力学 |
|
|
|
|
通用的插值补充格子Boltzmann方法应用于计算气动声学 |
刘万鸿1( ),陈荣钱1,2,*( ),邱若凡1,林威1,尤延铖1 |
1. 厦门大学 航空航天学院,福建 厦门 361102 2. 中国空气动力研究与发展中心 气动噪声控制重点实验室,四川 绵阳 621000 |
|
Generalized form of interpolation-supplemented lattice Boltzmann method for computational aeroacoustics |
Wan-hong LIU1( ),Rong-qian CHEN1,2,*( ),Ruo-fan QIU1,Wei LIN1,Yan-cheng YOU1 |
1. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China 2. Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, China |
引用本文:
刘万鸿,陈荣钱,邱若凡,林威,尤延铖. 通用的插值补充格子Boltzmann方法应用于计算气动声学[J]. 浙江大学学报(工学版), 2020, 54(8): 1637-1644.
Wan-hong LIU,Rong-qian CHEN,Ruo-fan QIU,Wei LIN,Yan-cheng YOU. Generalized form of interpolation-supplemented lattice Boltzmann method for computational aeroacoustics. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1637-1644.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.024
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1637
|
1 |
MARIé S, RICOT D, SAGAUT P Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2009, 228 (4): 1056- 1070
doi: 10.1016/j.jcp.2008.10.021
|
2 |
KAM E W S, LEUNG R C K, SO R M C, et al A lattice Boltzmann method for computation of aeroacoustic interaction[J]. International Journal of Modern Physics C, 2007, 18 (4): 463- 472
doi: 10.1142/S0129183107010693
|
3 |
VIGGEN E M. The lattice Boltzmann methods with applications in acoustics [D]. Trondheim: Norwegian University of Science and Technology, 2009.
|
4 |
VIGGEN E M Acoustic multipole sources for the lattice Boltzmann method[J]. Physical Review E, 2013, 87 (2): 023306
doi: 10.1103/PhysRevE.87.023306
|
5 |
王勇, 何雅玲, 刘迎文, 等 声波衰减的格子-Boltzmann 方法模拟[J]. 西安交通大学学报, 2007, 41 (1): 5- 8 WANG Yong, HE Ya-ling, LIU Ying-wen, et al Simulation on attenuation of sound waves with lattice-Boltzmann method[J]. Journal of Xi’an Jiaotong University, 2007, 41 (1): 5- 8
doi: 10.3321/j.issn:0253-987X.2007.01.002
|
6 |
司海青, 石岩, 王兵, 等 基于格子Boltzmann方法的气动声学计算[J]. 南京航空航天大学学报, 2013, 45 (5): 616- 620 SI Hai-qing, SHI Yan, WANG Bing, et al Computational aeroacoustics based on lattice Boltzmann method[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45 (5): 616- 620
doi: 10.3969/j.issn.1005-2615.2013.05.007
|
7 |
SI H Q, WANG B, SHI Y, et al. Aero-acoustics computations of square cylinder using the latticeBoltzmann method [J]. Applied Mechanics and Materials. 2014, 444-445: 400-405.
|
8 |
邵卫东, 李军 计算气动声学中的伽辽金玻尔兹曼方法研究[J]. 西安交通大学学报, 2016, 50 (3): 134- 140 SHAO Wei-dong, LI Jun Study on the Galerkin Boltzmann method for computational aeroacoustics[J]. Journal of Xi’an Jiaotong University, 2016, 50 (3): 134- 140
|
9 |
李凯. 可压缩格子Boltzmann 方法研究[D]. 西安: 西北工业大学, 2016. LI Kai. Study on the compressible lattice Boltzmann method [D]. Xi’an: Northwestern Polytechnical University, 2016.
|
10 |
江茂强, 张瑞, 柳朝晖 求解复杂边界的直接力浸入边界-格子Boltzmann耦合方法[J]. 工程热物理学报, 2018, 39 (12): 139- 144 JIANG Mao-qiang, ZHANG Rui, LIU Zhao-hui Direct forcing immersed boundary-lattice Boltzmann coupling method for solving fluid structure interaction with complex boundary[J]. Journal of Engineering Thermophysics, 2018, 39 (12): 139- 144
doi: 10.1007/s10765-018-2458-0
|
11 |
CHEN L, YU Y, LU J, et al A comparative study of lattice Boltzmann methods using bounce: back schemes and immersed boundary ones for flow acoustic problems[J]. International Journal for Numerical Methods in Fluids, 2014, 74 (6): 439- 467
doi: 10.1002/fld.3858
|
12 |
周昊, 芮淼, 岑可法 多孔介质内流体流动的大涡格子Boltzmann方法研究[J]. 浙江大学学报: 工学版, 2012, 46 (9): 1660- 1665 ZHOU Hao, RUI Miao, CEN Ke-fa Study of flow in proous media by LES-LBM coupling method[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1660- 1665
|
13 |
IMAMURA T, SUZUKI K, NAKAMURA T, et al Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method[J]. Journal of Computational Physics, 2005, 202 (2): 645- 663
doi: 10.1016/j.jcp.2004.08.001
|
14 |
李维仲, 冯玉静, 董波, 等 直角和贴体坐标系下两种格子Boltzmann方法的比较研究[J]. 计算力学学报, 2014, (3): 357- 362 LI Wei-zhong, FENGN Yu-jing, DONG Bo, et al Comparison of two lattice Boltzmann Schemes in Cartesian coordinate and body-fitted coordinate system[J]. Chinese Journal of Computational Mechanics, 2014, (3): 357- 362
doi: 10.7511/jslx201403013
|
15 |
何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.
|
16 |
HE X, DOOLEN G Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder[J]. Journal of Computational Physics, 1997, 134 (2): 306- 315
doi: 10.1006/jcph.1997.5709
|
17 |
GHIA U, GHIA K N, SHIN C T High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [J]. Journal of Computational Physics, 1982, 48 (3): 387- 411
doi: 10.1016/0021-9991(82)90058-4
|
18 |
XU H, SAGAUT P Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2011, 230 (13): 5353- 5382
doi: 10.1016/j.jcp.2011.03.040
|
19 |
INOUE O, HATAKEYAMA N Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471: 285- 314
doi: 10.1017/S0022112002002124
|
20 |
LAFITTE A, PEROT F. Investigation of the noise generated by cylinder flows using a direct lattice-Boltzmann approach [C] // 30th AIAA Aeroacoustics Conference. Miami: AIAA, 2009: 3268.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|