计算机技术 |
|
|
|
|
基于半监督学习的多场景火灾小规模稀薄烟雾检测 |
杨凯博1( ),钟铭恩1,*( ),谭佳威2,邓智颖1,周梦丽1,肖子佶1 |
1. 厦门理工学院 福建省客车先进设计与制造重点实验室,福建 厦门 361024 2. 厦门大学 航空航天学院,福建 厦门 361102 |
|
Small-scale sparse smoke detection in multiple fire scenarios based on semi-supervised learning |
Kaibo YANG1( ),Mingen ZHONG1,*( ),Jiawei TAN2,Zhiying DENG1,Mengli ZHOU1,Ziji XIAO1 |
1. Fujian Key Laboratory of Bus Advanced Design and Manufacture, Xiamen University of Technology, Xiamen 361024, China 2. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China |
引用本文:
杨凯博,钟铭恩,谭佳威,邓智颖,周梦丽,肖子佶. 基于半监督学习的多场景火灾小规模稀薄烟雾检测[J]. 浙江大学学报(工学版), 2025, 59(3): 546-556.
Kaibo YANG,Mingen ZHONG,Jiawei TAN,Zhiying DENG,Mengli ZHOU,Ziji XIAO. Small-scale sparse smoke detection in multiple fire scenarios based on semi-supervised learning. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 546-556.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.012
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I3/546
|
1 |
FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection [C]// 42nd Annual Conference of the IEEE Industrial Electronics Society . Florence: IEEE, 2016: 877–882.
|
2 |
王殿伟, 赵文博, 房杰, 等 多类场景下无人机航拍视频烟雾检测算法[J]. 哈尔滨工业大学学报, 2023, 55 (10): 122- 129 WANG Dianwei, ZHAO Wenbo, FANG Jie, et al Smoke detection algorithm for UAV aerial video in multiple scenarios[J]. Journal of Harbin Institute of Technology, 2023, 55 (10): 122- 129
doi: 10.11918/202205119
|
3 |
马庆禄, 鲁佳萍, 唐小垚, 等 改进YOLOv5s的公路隧道烟火检测方法[J]. 浙江大学学报: 工学版, 2023, 57 (4): 784- 794 MA Qinglu, LU Jiaping, TANG Xiaoyao, et al Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 784- 794
|
4 |
谢康康, 朱文忠, 谢林森, 等 基于改进YOLOv7的火焰烟雾检测算法[J]. 国外电子测量技术, 2023, 42 (7): 41- 49 XIE Kangkang, ZHU Wenzhong, XIE Linsen, et al Improved YOLOv7-based flame smoke detection algorithm[J]. Foreign Electronic Measurement Technology, 2023, 42 (7): 41- 49
|
5 |
王晨灿, 李明 基于YOLOv8的火灾烟雾检测算法研究[J]. 北京联合大学学报, 2023, 37 (5): 69- 77 WANG Chencan, LI Ming Research on fire smoke detection algorithms based on YOLOv8[J]. Journal of Beijing Union University, 2023, 37 (5): 69- 77
|
6 |
HUO Y, ZHANG Q, JIA Y, et al A deep separable convolutional neural network for multiscale image-based smoke detection[J]. Fire Technology, 2022, 58 (7): 1445- 1468
|
7 |
WANG Y, HUA C, DING W, et al Real-time detection of flame and smoke using an improved YOLOv4 network[J]. Signal, Image and Video Processing, 2022, 16 (4): 1109- 1116
doi: 10.1007/s11760-021-02060-8
|
8 |
金程拓, 赵永智, 王涛, 等 基于改进YOLOX轻量级的烟雾火焰目标检测方法[J]. 滁州学院学报, 2023, 25 (5): 40- 45 JIN Chengtuo, ZHAO Yongzhi, WANG Tao, et al Improved YOLOX-based lightweight fire object detectiion algorithm[J]. Journal of Chuzhou University, 2023, 25 (5): 40- 45
doi: 10.3969/j.issn.1673-1794.2023.05.008
|
9 |
屠恩美, 杨杰 半监督学习理论及其研究进展概述[J]. 上海交通大学学报, 2018, 52 (10): 1280- 1291 TU Enmei, YANG Jie A review of semi-supervised learning theories and recent advances[J]. Journal of Shanghai Jiaotong University, 2018, 52 (10): 1280- 1291
|
10 |
XU B, CHEN M, GUAN W, et al. Efficient teacher: semi-supervised object detection for YOLOv5 [EB/OL]. (2023-02-15). https://arxiv.org/pdf/2302.07577.pdf.
|
11 |
周明非, 汪西莉 弱监督深层神经网络遥感图像目标检测模型[J]. 中国科学: 信息科学, 2018, 48 (8): 1022- 1034 ZHOU Mingfei, WANG Xili Object detection models of remote sensing images using deep neural networks with weakly supervised training method[J]. Scientia Sinica: Informationis, 2018, 48 (8): 1022- 1034
|
12 |
LIU Y C, MA C Y, HE Z, et al. Unbiased teacher for semi-supervised object detection [EB/OL]. (2021-02-18). https: //arxiv. org/abs/2102.09480. pdf.
|
13 |
ZHANG Y, YAO X, LIU C, et al. S4OD: semi-supervised learning for single-stage object detection [EB/OL]. [2023-12-16]. https://arxiv.org/abs/2204.04492.pdf.
|
14 |
XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3060–3069.
|
15 |
CHEN B, LI P, CHEN X, et al. Dense learning based semi-supervised object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 4815–4824.
|
16 |
MEETHAL A, PEDERSOLI M, ZHU Z, et al. Semi-weakly supervised object detection by sampling pseudo ground-truth boxes [EB/OL]. (2022-07-26). https://arxiv.org/abs/2204.00147.pdf.
|
17 |
YANG Q, WEI X, WANG B, et al. Interactive self-training with mean teachers for semi-supervised object detection [C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition . Nashville: IEEE, 2021: 5941–5950.
|
18 |
LIN T Y, DOLLAR P, GRISHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Xiamen: IEEE, 2017: 2117–2125.
|
19 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 8759–8768.
|
20 |
HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916
doi: 10.1109/TPAMI.2015.2389824
|
21 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv8: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 7464–7475.
|
22 |
CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher flops for faster neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 12021–12031.
|
23 |
LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions [EB/OL]. (2021-12-10). https://arxiv.org/pdf/2112.05561v1.pdf.
|
24 |
KLINKER F Exponential moving average versus moving exponential average[J]. Mathematische Semesterberichte, 2011, 58: 97- 107
doi: 10.1007/s00591-010-0080-8
|
25 |
ZHAN J, HU Y, ZHOU G, et al A high-precision forest fire smoke detection approach based on ARGNet[J]. Computers and Electronics in Agriculture, 2022, 196: 106874
doi: 10.1016/j.compag.2022.106874
|
26 |
YUAN F, ZHANG L, XIA X, et al A gated recurrent network with dual classification assistance for smoke semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 4409- 442
doi: 10.1109/TIP.2021.3069318
|
27 |
PEDRO V, ADRIANO C, ADRIANO V An automatic fire detection system based on deep convolutional neural networks for low-power, resource-constrained devices[J]. Neural Computing and Applications, 2022, 30: 15349- 15368
|
28 |
JIE H, LI S, ALBANIE S, et al. Squeeze-and-excitation networks. [EB/OL]. (2019-05-16). https://arxiv.org/pdf/1709.01507.pdf.
|
29 |
WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module. [EB/OL]. (2018-07-18). https://arxiv.org/abs/1807.06521.
|
30 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. [EB/OL]. (2016-01-06). https://arxiv.org/pdf/1506.01497.pdf.
|
31 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector. [EB/OL]. (2015-12-08). https://arxiv.org/abs/1512.02325.
|
32 |
QIAO S, CHEN L, ALAN Y. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution. [EB/OL]. (2020-06-03). https://arxiv.org/abs/2006.02334.pdf.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|