Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 546-556    DOI: 10.3785/j.issn.1008-973X.2025.03.012
计算机技术     
基于半监督学习的多场景火灾小规模稀薄烟雾检测
杨凯博1(),钟铭恩1,*(),谭佳威2,邓智颖1,周梦丽1,肖子佶1
1. 厦门理工学院 福建省客车先进设计与制造重点实验室,福建 厦门 361024
2. 厦门大学 航空航天学院,福建 厦门 361102
Small-scale sparse smoke detection in multiple fire scenarios based on semi-supervised learning
Kaibo YANG1(),Mingen ZHONG1,*(),Jiawei TAN2,Zhiying DENG1,Mengli ZHOU1,Ziji XIAO1
1. Fujian Key Laboratory of Bus Advanced Design and Manufacture, Xiamen University of Technology, Xiamen 361024, China
2. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
 全文: PDF(3276 KB)   HTML
摘要:

为了探索高性能的轻量级火灾烟雾检测算法,构建了包含9种火灾场景、3个烟雾类型的图像集MSIFSD,设计了深度卷积神经网络DeepSmoke. 针对小规模稀薄烟雾检测困难的问题,提出高效特征聚合模块PM-C2f和部分混合最相关区域自注意力机制模块PM-TF,PM-C2f模块用来整合各层次图像特征的上下文信息,PM-TF模块用于强化小规模稀薄烟雾的稀疏特征. 针对DeepSmoke在不同场景下适应性不足的问题,提出使用伪标签分类器的半监督训练策略,利用大量未标注数据辅助模型训练,提升多类场景下的检测性能. 实验结果表明,该算法针对小规模、稀薄烟雾和普通烟雾的检测准确率分别为88.2%、90.0%和98.3%,综合平均检测准确率为94.2%,均优于现有主流算法,且浮点运算量仅为9.3×109,体现了对边缘设备的友好性.

关键词: 火灾烟雾检测深度学习半监督学习伪标签注意力    
Abstract:

A dataset named MSIFSD, which contained 9 types of fire scenes and 3 types of smoke, was constructed to explore a lightweight fire smoke detection algorithm with good performance. Additionally, a deep convolutional neural network named DeepSmoke was developed. To address the challenge of detecting small-scale and sparse smoke, an efficient feature aggregation module called PM-C2f was proposed and incorporated with a partial mixed-relevance region self-attention mechanism module called PM-TF. The PM-C2f module was utilized to integrate contextual information from various levels of image features, while the PM-TF module was used to strengthen the sparse features of small-scale and sparse smoke. A semi-supervised training strategy using a pseudo-label classifier was proposed to address the issue of DeepSmoke’s insufficient adaptability across different scenarios. A large amount of unlabeled data were leveraged to assist model training and improve the detection performance across multiple scene types. Experimental results demonstrated that the proposed algorithm achieved the detection accuracies of 88.2%, 90.0%, and 98.3% for small-scale, sparse, and general smoke, respectively. The average comprehensive detection accuracy was 94.2%, outperforming the existing mainstream algorithms. And the floating-point operation was 9.3×109, reflecting the friendliness to edge devices.

Key words: fire    smoke detection    deep learning    semi-supervised learning    pseudo label    attention
收稿日期: 2024-02-03 出版日期: 2025-03-10
CLC:  TP 391.4  
基金资助: 福建省自然科学基金资助项目(2023J011439, 2019J01859).
通讯作者: 钟铭恩     E-mail: kaiboo_yang.ty@foxmail.com;zhongmingen@xmut.edu.cn
作者简介: 杨凯博(2000—),硕士生,从事机器视觉和智能消防研究. orcid.org/0009-0002-7707-0288. E-mail:kaiboo_yang.ty@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨凯博
钟铭恩
谭佳威
邓智颖
周梦丽
肖子佶

引用本文:

杨凯博,钟铭恩,谭佳威,邓智颖,周梦丽,肖子佶. 基于半监督学习的多场景火灾小规模稀薄烟雾检测[J]. 浙江大学学报(工学版), 2025, 59(3): 546-556.

Kaibo YANG,Mingen ZHONG,Jiawei TAN,Zhiying DENG,Mengli ZHOU,Ziji XIAO. Small-scale sparse smoke detection in multiple fire scenarios based on semi-supervised learning. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 546-556.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.012        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/546

图 1  DeepSmoke网络结构
图 2  PMConv模块的工作原理
图 3  GAM与TFM的效果对比
图 4  PM-TF模块结构
图 5  半监督训练原理
图 6  使用PLC前后热力图对比
图 7  部分常见场景火灾烟雾图像举例
数据集N
住宅工厂仓库学校森林农场村庄交通停车场总数
Hard_18578658118969238497963146576968
Hard_2733415933709100569932850010346356
Easy81890639079812783586724889686676
总数24082186213424033206190617961302265920000
表 1  MSIFSD数据集中的场景类别及具体数量
残差类型AP/%R/%FLOPs/109
Bottleneck92.185.610.4
P-B90.884.39.2
PM-B92.085.69.3
表 2  使用不同残差模块的实验结果
图 8  2种残差模块结构示意图
注意力机制类型EasyHard_1Hard_2MSIFSDFLOPs/109
AP/%R/%AP/%R/%AP/%R/%AP/%R/%
95.088.284.979.086.280.790.683.78.5
CAM95.589.485.179.586.681.490.984.59.7
CBAM96.189.585.379.886.881.691.284.710.7
GAM96.289.685.580.186.981.591.385.110.3
TFM96.389.686.481.087.882.392.085.69.3
表 3  使用不同注意力机制的实验结果
图 9  不同最相关区域注意力特征提取模块结构对比
模块类型AP/%R/%FLOPs/109
PM-C2f90.683.78.5
simPM-TF91.585.09.2
PM-2TF91.184.99.9
PM-TF92.085.69.3
表 4  不同特征提取模块性能对比
p1p2p3p4AP/%R/%FLOPs/109
××××90.683.78.5
×××91.285.08.7
×××91.083.98.7
×××90.984.08.7
×××90.883.98.7
92.085.69.3
表 5  PM-TF消融实验结果
图 10  全监督与半监督学习策略的AP变化曲线对比
SSTPLCAP/%R/%
××92.085.6
×93.687.3
94.287.6
表 6  不同学习策略时DeepSmoke模型的性能对比
算法EasyHard_1Hard_2MSIFSDD-FireFLOPs/109FPS
AP/%R/%AP/%R/%AP/%R/%AP/%R/%AP/%R/%
Faster R-CNN[30]83.673.273.665.777.168.779.169.373.262.940.325.3
SSD[31]75.462.867.357.768.258.471.359.468.564.327.651.1
YOLOv5n[32]89.581.378.272.082.175.584.977.280.374.21.757.8
YOLOv8n95.088.482.377.383.478.389.983.786.281.48.2103.0
DETR[33]75.685.469.977.671.379.272.281.669.376.68.752.1
DeepSmoke96.389.686.481.087.882.392.085.688.384.19.385.3
DeepSmoke_SST98.391.488.282.790.084.394.287.692.688.39.385.3
表 7  不同烟雾集下各个模型的性能对比
图 11  本研究算法DeepSmoke-SST与现有最优算法YOLOv8n的检测结果对比
1 FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection [C]// 42nd Annual Conference of the IEEE Industrial Electronics Society . Florence: IEEE, 2016: 877–882.
2 王殿伟, 赵文博, 房杰, 等 多类场景下无人机航拍视频烟雾检测算法[J]. 哈尔滨工业大学学报, 2023, 55 (10): 122- 129
WANG Dianwei, ZHAO Wenbo, FANG Jie, et al Smoke detection algorithm for UAV aerial video in multiple scenarios[J]. Journal of Harbin Institute of Technology, 2023, 55 (10): 122- 129
doi: 10.11918/202205119
3 马庆禄, 鲁佳萍, 唐小垚, 等 改进YOLOv5s的公路隧道烟火检测方法[J]. 浙江大学学报: 工学版, 2023, 57 (4): 784- 794
MA Qinglu, LU Jiaping, TANG Xiaoyao, et al Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 784- 794
4 谢康康, 朱文忠, 谢林森, 等 基于改进YOLOv7的火焰烟雾检测算法[J]. 国外电子测量技术, 2023, 42 (7): 41- 49
XIE Kangkang, ZHU Wenzhong, XIE Linsen, et al Improved YOLOv7-based flame smoke detection algorithm[J]. Foreign Electronic Measurement Technology, 2023, 42 (7): 41- 49
5 王晨灿, 李明 基于YOLOv8的火灾烟雾检测算法研究[J]. 北京联合大学学报, 2023, 37 (5): 69- 77
WANG Chencan, LI Ming Research on fire smoke detection algorithms based on YOLOv8[J]. Journal of Beijing Union University, 2023, 37 (5): 69- 77
6 HUO Y, ZHANG Q, JIA Y, et al A deep separable convolutional neural network for multiscale image-based smoke detection[J]. Fire Technology, 2022, 58 (7): 1445- 1468
7 WANG Y, HUA C, DING W, et al Real-time detection of flame and smoke using an improved YOLOv4 network[J]. Signal, Image and Video Processing, 2022, 16 (4): 1109- 1116
doi: 10.1007/s11760-021-02060-8
8 金程拓, 赵永智, 王涛, 等 基于改进YOLOX轻量级的烟雾火焰目标检测方法[J]. 滁州学院学报, 2023, 25 (5): 40- 45
JIN Chengtuo, ZHAO Yongzhi, WANG Tao, et al Improved YOLOX-based lightweight fire object detectiion algorithm[J]. Journal of Chuzhou University, 2023, 25 (5): 40- 45
doi: 10.3969/j.issn.1673-1794.2023.05.008
9 屠恩美, 杨杰 半监督学习理论及其研究进展概述[J]. 上海交通大学学报, 2018, 52 (10): 1280- 1291
TU Enmei, YANG Jie A review of semi-supervised learning theories and recent advances[J]. Journal of Shanghai Jiaotong University, 2018, 52 (10): 1280- 1291
10 XU B, CHEN M, GUAN W, et al. Efficient teacher: semi-supervised object detection for YOLOv5 [EB/OL]. (2023-02-15). https://arxiv.org/pdf/2302.07577.pdf.
11 周明非, 汪西莉 弱监督深层神经网络遥感图像目标检测模型[J]. 中国科学: 信息科学, 2018, 48 (8): 1022- 1034
ZHOU Mingfei, WANG Xili Object detection models of remote sensing images using deep neural networks with weakly supervised training method[J]. Scientia Sinica: Informationis, 2018, 48 (8): 1022- 1034
12 LIU Y C, MA C Y, HE Z, et al. Unbiased teacher for semi-supervised object detection [EB/OL]. (2021-02-18). https: //arxiv. org/abs/2102.09480. pdf.
13 ZHANG Y, YAO X, LIU C, et al. S4OD: semi-supervised learning for single-stage object detection [EB/OL]. [2023-12-16]. https://arxiv.org/abs/2204.04492.pdf.
14 XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3060–3069.
15 CHEN B, LI P, CHEN X, et al. Dense learning based semi-supervised object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 4815–4824.
16 MEETHAL A, PEDERSOLI M, ZHU Z, et al. Semi-weakly supervised object detection by sampling pseudo ground-truth boxes [EB/OL]. (2022-07-26). https://arxiv.org/abs/2204.00147.pdf.
17 YANG Q, WEI X, WANG B, et al. Interactive self-training with mean teachers for semi-supervised object detection [C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition . Nashville: IEEE, 2021: 5941–5950.
18 LIN T Y, DOLLAR P, GRISHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Xiamen: IEEE, 2017: 2117–2125.
19 LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 8759–8768.
20 HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916
doi: 10.1109/TPAMI.2015.2389824
21 WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv8: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 7464–7475.
22 CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher flops for faster neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 12021–12031.
23 LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions [EB/OL]. (2021-12-10). https://arxiv.org/pdf/2112.05561v1.pdf.
24 KLINKER F Exponential moving average versus moving exponential average[J]. Mathematische Semesterberichte, 2011, 58: 97- 107
doi: 10.1007/s00591-010-0080-8
25 ZHAN J, HU Y, ZHOU G, et al A high-precision forest fire smoke detection approach based on ARGNet[J]. Computers and Electronics in Agriculture, 2022, 196: 106874
doi: 10.1016/j.compag.2022.106874
26 YUAN F, ZHANG L, XIA X, et al A gated recurrent network with dual classification assistance for smoke semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 4409- 442
doi: 10.1109/TIP.2021.3069318
27 PEDRO V, ADRIANO C, ADRIANO V An automatic fire detection system based on deep convolutional neural networks for low-power, resource-constrained devices[J]. Neural Computing and Applications, 2022, 30: 15349- 15368
28 JIE H, LI S, ALBANIE S, et al. Squeeze-and-excitation networks. [EB/OL]. (2019-05-16). https://arxiv.org/pdf/1709.01507.pdf.
29 WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module. [EB/OL]. (2018-07-18). https://arxiv.org/abs/1807.06521.
30 REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. [EB/OL]. (2016-01-06). https://arxiv.org/pdf/1506.01497.pdf.
31 LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector. [EB/OL]. (2015-12-08). https://arxiv.org/abs/1512.02325.
32 QIAO S, CHEN L, ALAN Y. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution. [EB/OL]. (2020-06-03). https://arxiv.org/abs/2006.02334.pdf.
[1] 陈文强,王东丹,朱文英,汪勇杰,王涛. 基于时空图注意力网络的车辆多模态轨迹预测模型[J]. 浙江大学学报(工学版), 2025, 59(3): 443-450.
[2] 刘登峰,郭文静,陈世海. 基于内容引导注意力的车道线检测网络[J]. 浙江大学学报(工学版), 2025, 59(3): 451-459.
[3] 姚明辉,王悦燕,吴启亮,牛燕,王聪. 基于小样本人体运动行为识别的孪生网络算法[J]. 浙江大学学报(工学版), 2025, 59(3): 504-511.
[4] 梁礼明,龙鹏威,金家新,李仁杰,曾璐. 基于改进YOLOv8s的钢材表面缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(3): 512-522.
[5] 尹向雷,屈少鹏,解永芳,苏妮. 基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测[J]. 浙江大学学报(工学版), 2025, 59(3): 535-545.
[6] 薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(2): 261-268.
[7] 陈智超,杨杰,李凡,冯志成. 基于深度学习的列车运行环境感知关键算法研究综述[J]. 浙江大学学报(工学版), 2025, 59(1): 1-17.
[8] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[9] 刘登峰,陈世海,郭文静,柴志雷. 基于轻量残差网络的高效半色调算法[J]. 浙江大学学报(工学版), 2025, 59(1): 62-69.
[10] 赵顗,安醇,李铭浩,马健霄,怀硕. 城市快速路互通交织区车辆的换道持续距离选择[J]. 浙江大学学报(工学版), 2025, 59(1): 205-212.
[11] 刘欢,李云红,张蕾涛,郭越,苏雪平,朱耀麟,侯乐乐. 基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别[J]. 浙江大学学报(工学版), 2024, 58(9): 1757-1767.
[12] 李凡,杨杰,冯志成,陈智超,付云骁. 基于图像识别的弓网接触点检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1801-1810.
[13] 肖力,曹志刚,卢浩冉,黄志坚,蔡袁强. 基于深度学习和梯度优化的弹性超材料设计[J]. 浙江大学学报(工学版), 2024, 58(9): 1892-1901.
[14] 李灿林,王新玥,马利庄,邵志文,张文娇. 融合注意力机制和结构线提取的图像卡通化[J]. 浙江大学学报(工学版), 2024, 58(8): 1728-1737.
[15] 李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.