Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 443-450    DOI: 10.3785/j.issn.1008-973X.2025.03.001
交通工程、土木工程     
基于时空图注意力网络的车辆多模态轨迹预测模型
陈文强(),王东丹,朱文英*(),汪勇杰,王涛
长安大学 运输工程学院,陕西 西安 710064
Vehicle multimodal trajectory prediction model based on spatio-temporal graph attention network
Wenqiang CHEN(),Dongdan WANG,Wenying ZHU*(),Yongjie WANG,Tao WANG
School of Transportation Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(1204 KB)   HTML
摘要:

针对人工驾驶车辆轨迹的预测难题及对自动驾驶决策的影响,建立基于时空图注意力网络的车辆多模态轨迹预测模型(STGAMT). 模型基于车辆的历史信息,对车辆时间和空间维度的特征进行建模. 利用二维卷积神经网络识别车辆的横纵向的变道状态信息,将横纵向变道状态信息分别与时空动态交互模块输出信息桥连为横纵向运动特征,采用Softmax函数识别车辆的驾驶意图. 利用基于高斯条件分布的GRU网络对轨迹进行多模态轨迹输出. 实验结果表明,在短期预测范围内,STGAMT模型在HighD和NGSIM数据集上的RMSE较其他5个经典模型的平均RMSE降低了63.8%和41.0%;在长期预测范围内,STGAMT模型在HighD和NGSIM数据集上的RMSE较其他5个经典模型的平均RMSE降低了62.5%和19.1%. STGAMT模型可以有效提高人工驾驶车辆轨迹预测精度.

关键词: 自动驾驶车辆轨迹预测驾驶意图识别多模态轨迹图注意力网络    
Abstract:

A spatio-temporal graph attention network for vehicle multimodal trajectory prediction (STGAMT) was proposed to address the challenges of predicting manually-driven vehicle trajectories and investigating their impact on autonomous driving decisions. The temporal and spatial characteristics were modeled based on the historical information about the vehicle. A two-dimensional convolutional neural network was employed to identify transverse and longitudinal lane change states, which were then combined with the output from the spatio-temporal dynamic interaction module to form transverse and longitudinal motion characteristics. The Softmax function was used to determine the vehicle’s driving intention. The multi-mode trajectory output was achieved by using a GRU network based on Gaussian conditional distribution. Experimental results showed that, in short-term predictions, the STGAMT model reduced the average error by 63.8% and 41.0% compared to the other five classic models on HighD and NGSIM datasets, respectively. In long-term predictions, the STGAMT model reduced the RMSE by 62.5% and 19.1% compared to the average RMSE of the other five classic models on HighD and NGSIM datasets, respectively. Results indicated that the STGAMT model could effectively improve the accuracy of manually-driven vehicle trajectory prediction.

Key words: autonomous driving    vehicle trajectory prediction    driving intention recognition    multimodality trajectory    graph attention network
收稿日期: 2024-01-03 出版日期: 2025-03-10
CLC:  U 491  
基金资助: 国家重点研发计划资助项目(2021YFE0203600);陕西省自然科学基金资助项目(2022JM-426);陕西省交通运输厅科技项目(23-33K);长安大学中央高校基本科研业务费专项资金资助项目(300102344203).
通讯作者: 朱文英     E-mail: cwq@chd.edu.cn;zwying@chd.edu.cn
作者简介: 陈文强(1981—),男,教授,从事交通安全研究. orcid.org/0000-0002-3211-1245. E-mail:cwq@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈文强
王东丹
朱文英
汪勇杰
王涛

引用本文:

陈文强,王东丹,朱文英,汪勇杰,王涛. 基于时空图注意力网络的车辆多模态轨迹预测模型[J]. 浙江大学学报(工学版), 2025, 59(3): 443-450.

Wenqiang CHEN,Dongdan WANG,Wenying ZHU,Yongjie WANG,Tao WANG. Vehicle multimodal trajectory prediction model based on spatio-temporal graph attention network. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 443-450.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.001        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/443

图 1  车辆相对运动状态计算图
图 2  STGAMT模型结构图
图 3  轨迹受历史时间的影响
图 4  图注意力网络模型示意图
图 5  车辆变道轨迹
图 6  意图特征提取操作图
数据集RMSE
tf/sS-LSTM[16]CS-LSTM[15]S-GAN[14]PIP[18]STDAN[17]STGAMT(w/o IFE)STGAMT
HighD10.220.220.200.170.190.070.07
20.620.610.570.520.270.190.19
31.271.241.141.050.480.350.32
42.152.101.901.760.910.650.61
53.143.272.912.631.661.201.14
NGSIM10.650.610.570.550.420.220.21
21.311.271.321.181.010.800.78
32.162.092.221.941.691.521.49
43.253.103.262.882.562.472.40
54.554.374.404.043.673.693.58
表 1  不同模型在5 s预测范围内的均方根误差
模型名称te/s
S-LSTM[16]0.0157
CS-LSTM[15]0.0174
S-GAN[14]0.0283
PIP[18]0.0185
STDAN[17]0.0214
STGAMT(w/o IFE)0.0137
STGAMT0.0139
表 2  模型每轮训练时间对比
数据集tf/sRMSE(lat)RMSE(lon)
STGAMT
(w/o IFE)
STGAMTSTGAMT
(w/o IFE)
STGAMT
HighD10.030.030.070.07
20.120.110.140.14
30.250.230.240.22
40.370.360.530.48
50.490.471.091.04
NGSIM10.080.080.200.20
20.200.200.770.75
30.300.291.491.46
40.390.372.432.37
50.490.403.663.54
表 3  消融实验均方根误差对比
图 7  目标车辆预测轨迹及注意力分布图
1 ISLAM M M, NEWAZ A A, SONG L, et al Connected autonomous vehicles: state of practice[J]. Applied Stochastic Models in Business and Industry, 2023, 39 (5): 684- 700
doi: 10.1002/asmb.2772
2 HUANG Y J, DU J T, YANG Z R, et al A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7 (3): 652- 674
doi: 10.1109/TIV.2022.3167103
3 BENRACHOU D E, GLASER S, ELHENAWY M, et al Use of social interaction and intention to improve motion prediction within automated vehicle framework: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (12): 22807- 22837
doi: 10.1109/TITS.2022.3207347
4 李文礼, 韩迪, 石晓辉, 等. 基于时-空注意力机制的车辆轨迹预测[J]. 中国公路学报, 2023, 36: 226–239.
LI Wenli, HAN Di, SHI Xiaohui, et al, Vehicle trajectory prediction based on spatial-temporal attention mechanism[J]. China Journal of Highway and Transport , 2023, 36: 226–239.
5 ZHANG K P, LI L Explainable multimodal trajectory prediction using attention models[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103829
doi: 10.1016/j.trc.2022.103829
6 DING Z, ZHAO H Incorporating driving knowledge in deep learning based vehicle trajectory prediction: a survey[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8 (8): 3996- 4015
doi: 10.1109/TIV.2023.3266446
7 HOUENOU A, BONNIFAIT P, CHERFAOUI V, et al. Vehicle trajectory prediction based on motion model and maneuver recognition [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Tokyo: IEEE, 2013: 4363–4369.
8 BARTH A, FRANKE U. Where will the oncoming vehicle be the next second? [C]// 2008 IEEE Intelligent Vehicles Symposium . Eindhoven: IEEE, 2008: 510–515.
9 JIANG Y, ZHU B, YANG S, et al Vehicle trajectory prediction considering driver uncertainty and vehicle dynamics based on dynamic bayesian network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (2): 689- 703
doi: 10.1109/TSMC.2022.3186639
10 HUANG M, ZHU M, XIAO Y, et al Bayonet-corpus: a trajectory prediction method based on bayonet context and bidirectional GRU[J]. Digital Communications and Networks, 2021, 7 (1): 72- 81
doi: 10.1016/j.dcan.2020.03.002
11 ALTCHé F, DE LA FORTELLE A, IEEE. An LSTM network for highway trajectory prediction [C]// IEEE International Conference on Intelligent Transportation Systems . New York: IEEE, 2017: 253–259.
12 LI X, YING X W, CHUAH M C, et al. GRIP: graph-based interaction-aware trajectory prediction [C]// IEEE Intelligent Transportation Systems Conference . Auckland: IEEE, 2019: 3960–3966.
13 MO X U, YANG X, CHEN L. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving [C]// IEEE International Intelligent Transportation Systems Conference . Indianapolis: IEEE, 2021: 1934–1939.
14 GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 2255–2264.
15 DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops . New York: IEEE, 2018: 1468–1476.
16 ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces [C]// IEEE Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2016: 961–971.
17 CHEN X, ZHANG H, ZHAO F, et al Intention-aware vehicle trajectory prediction based on spatial-temporal dynamic attention network for internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 19471- 19483
doi: 10.1109/TITS.2022.3170551
18 SONG H, DING W C, CHEN Y X, et al. PiP: planning-informed trajectory prediction for autonomous driving [C]// Computer Vision - ECCV 2020 16th European Conference Proceedings Lecture Notes in Computer Science . Glasgow: LNCS, 2020: 598–614.
[1] 黎文皓,季彦婕,吴浩,贾叶雯,张水潮. 基于多智体的自动驾驶汽车停车空载收费策略[J]. 浙江大学学报(工学版), 2024, 58(8): 1659-1670.
[2] 舒晴,刘喜平,谭钊,李希,万常选,刘德喜,廖国琼. 基于依存关系图注意力网络的SQL生成方法[J]. 浙江大学学报(工学版), 2024, 58(5): 908-917.
[3] 冯驰,梅振宇. 基于自动驾驶车辆调度的停车系统收费策略优化[J]. 浙江大学学报(工学版), 2024, 58(1): 87-95.
[4] 苏丰龙,景宁. 基于关系聚合的时序知识图谱表示学习[J]. 浙江大学学报(工学版), 2023, 57(2): 235-242.
[5] 陈成,张皞,李永强,冯远静. 关系生成图注意力网络的知识图谱链接预测[J]. 浙江大学学报(工学版), 2022, 56(5): 1025-1034.
[6] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[7] 金立生,华强,郭柏苍,谢宪毅,闫福刚,武波涛. 基于优化DeepSort的前方车辆多目标跟踪[J]. 浙江大学学报(工学版), 2021, 55(6): 1056-1064.
[8] 刘创,梁军. 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163.