计算机技术、通信技术 |
|
|
|
|
基于依存关系图注意力网络的SQL生成方法 |
舒晴1,2( ),刘喜平1,*( ),谭钊1,李希1,万常选1,刘德喜1,廖国琼1 |
1. 江西财经大学 信息管理学院,江西 南昌 330013 2. 江西农业大学 软件学院,江西 南昌 330013 |
|
SQL generation method based on dependency relational graphattention network |
Qing SHU1,2( ),Xiping LIU1,*( ),Zhao TAN1,Xi LI1,Changxuan WAN1,Dexi LIU1,Guoqiong LIAO1 |
1. School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China 2. School of Software, Jiangxi Agricultural University, Nanchang 330013, China |
引用本文:
舒晴,刘喜平,谭钊,李希,万常选,刘德喜,廖国琼. 基于依存关系图注意力网络的SQL生成方法[J]. 浙江大学学报(工学版), 2024, 58(5): 908-917.
Qing SHU,Xiping LIU,Zhao TAN,Xi LI,Changxuan WAN,Dexi LIU,Guoqiong LIAO. SQL generation method based on dependency relational graphattention network. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 908-917.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.004
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I5/908
|
1 |
刘喜平, 舒晴, 何佳壕, 等 基于自然语言的数据库查询生成研究综述[J]. 软件学报, 2022, 33 (11): 4107- 4136 LIU Xiping, SHU Qing, HE Jiahao, et al Survey on generating database queries based on natural language[J]. Journal of Software, 2022, 33 (11): 4107- 4136
|
2 |
GUO J, ZHAN Z, GAO Y, et al. Towards complex text-to-SQL in cross-domain database with intermediate representation [C]// Proceedings of ACL . Florence: ACL, 2019: 4524-4535.
|
3 |
WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis [C]// Proceedings of ACL . [S. l. ]: ACL, 2020: 3229-3238.
|
4 |
XU X, LIU C, SONG D X. SQLNet: generating structured queries from natural language without reinforcement learning [EB/OL]. (2017-11-13) [2023-10-27]. https://arxiv.org/abs/1711.04436.
|
5 |
YU T, LI Z, ZHANG Z, et al. TypeSQL: knowledge-based type-aware neural text-to-SQL generation [C]// Proceedings of NAACL-HLT . New Orleans: ACL, 2018: 588-594.
|
6 |
LEI W, WANG W, MA Z, et al. Re-examining the role of schema linking in text-to-SQL [C]// Proceedings of EMNLP . [S. l.]: ACL, 2020: 6943-6954.
|
7 |
CHOI D, SHIN M C, KIM E, et al RYANSQL: recursively applying sketch-based slot fillings for complex text-to-SQL in cross-domain databases[J]. Computational Linguistics, 2021, 47 (2): 309- 332
|
8 |
BOGIN B, BERANT J, GARDNER M. Representing schema structure with graph neural networks for text-to-SQL parsing [C]// Proceedings of ACL . Florence: ACL, 2019: 4560-4565.
|
9 |
BOGIN B, GARDNER M, BERANT J. Global reasoning over database structures for text-to-SQL parsing [C]// Proceedings of EMNLP-IJCNLP 2019 . Hong Kong: ACL, 2019: 3659-3664.
|
10 |
ZHONG V, XIONG C, SOCHER R. Seq2SQL: generating structured queries from natural language using reinforcement learning [EB/OL]. (2017-11-09) [2023-10-27]. https://arxiv.org/abs/1709.00103.
|
11 |
WANG B, SHIN R, LIU X, et al. RAT-SQL: relation-aware schema encoding and linking for text-to-SQL parsers [C]// Proceedings of ACL . [S. l. ]: ACL, 2020: 7567-7578.
|
12 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems . Long Beach: MIT Press, 2017: 5998–6008.
|
13 |
LIN X V, SOCHER R, XIONG C. Bridging textual and tabular data for cross-domain text-to-SQL semantic parsing [C]// Findings of the ACL: EMNLP 2020 . [S. l.]: ACL, 2020: 4870-4888.
|
14 |
CAO R, CHEN L, CHEN Z, et al. Line graph enhanced text-to-SQL model with mixed local and non-local relations [C]// Proceedings of ACL-IJCNLP 2021 . [S. l.]: ACL, 2021: 2541-2555.
|
15 |
CAI R, YUAN J, XU B, et al Sadga: Structure-aware dual graph aggregation network for text-to-sql[J]. Advances in Neural Information Processing Systems, 2021, 34: 7664- 7676
|
16 |
HUI B, GENG R, WANG L, et al. S2SQL: injecting syntax to question-schema interaction graph encoder for Text-to-SQL parsers [C]// Findings of the ACL: ACL 2022 . Dublin: ACL, 2022: 1254-1262.
|
17 |
QI J, TANG J, HE Z, et al. Rasat: Integrating relational structures into pretrained seq2seq model for text-to-sql [C]// Proceedings of the 2022 Conference on EMNLP . Abu Dhabi: ACL, 2022: 3215-3229.
|
18 |
RAFFEL C, SHAZEER N, ROBERTS A, et al Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21 (1): 5485- 5551
|
19 |
SHAW P, CHANG M W, PASUPAT P, et al. Compositional generalization and natural language variation: can a semantic parsing approach handle both? [C]// Proceedings of ACL-IJCNLP 2021 . [S. l. ]: ACL, 2021: 922–938.
|
20 |
SCHOLAK T, SCHUCHER N, BAHDANAU D. PICARD: parsing incrementally for constrained auto-regressive decoding from language models [C]// Proceedings of the 2021 Conference on EMNLP . Punta Cana: ACL, 2021: 9895-9901.
|
21 |
GAO C, LI B, ZHANG W, et al. Towards generalizable and robust Text-to-SQL parsing [C]// Findings of the ACL: EMNLP 2022 . Abu Dhabi: ACL, 2022: 2113-2125.
|
22 |
XIE T, WU C H, SHI P, et al. Unifiedskg: Unifying and multi-tasking structured knowledge grounding with text-to-text language models [C]// Proceedings of the 2022 Conference on EMNLP . Abu Dhabi: ACL, 2022: 602-631.
|
23 |
LI J, HUI B, CHENG R, et al. Graphix-T5: mixing pre-trained Transformers with graph-aware layers for text-to-SQL parsing [EB/OL]. (2023-01-18) [2023-10-27]. https://arxiv.org/abs/2301.07507.
|
24 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of NAACL-HLT 2019 . Minneapolis: ACL, 2019: 4171–4186.
|
25 |
YU T, ZHANG R, YANG K, et al. Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and Text-to-SQL task [C]// Proceedings of the 2018 Conference on EMNLP . Brussels: ACL, 2018: 3911–3921.
|
26 |
GAN Y, CHEN X, PURVER M. Exploring underexplored limitations of cross-domain Text-to-SQL generalization [C]// Proceedings of EMNLP . [S. l. ]: ACL, 2021: 8926–8931.
|
27 |
GAN Y, CHEN X, HUANG Q, et al. Towards robustness of Text-to-SQL models against synonym substitution [C]// Proceedings of ACL-IJCNLP. [S. l. ]: ACL , 2021: 2505-2515.
|
28 |
SHAZEER N, STERN M. Adafactor: adaptive learning rates with sublinear memory cost [C]// Proceedings of the 35th International Conference on Machine Learning , Stockholm: PMLR, 2018: 4596-4604.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|