Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (2): 261-268    DOI: 10.3785/j.issn.1008-973X.2025.02.004
计算机技术     
基于改进YOLOv5的SAR图像有向舰船目标检测算法
薛雅丽1(),贺怡铭1,崔闪2,欧阳权1
1. 南京航空航天大学 自动化学院,江苏 南京 211106
2. 上海机电工程研究所,上海 201109
Oriented ship detection algorithm in SAR image based on improved YOLOv5
Yali XUE1(),Yiming HE1,Shan CUI2,Quan OUYANG1
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
 全文: PDF(2761 KB)   HTML
摘要:

针对合成孔径雷达 (SAR) 小目标成像特征不显著、目标具有任意朝向易出现漏检、检测精度较低的问题,提出面向SAR舰船小目标的ES-YOLOv5检测算法. 添加小目标检测层调整感受野大小,更适应小目标尺度特征,方便进行多尺度融合. 引入EMA注意力机制重点关注目标关键信息,强化特征的表达能力. 使用圆平滑标签(CSL)技术适应角度的周期性,实现了对角度的高精度分类. 实验结果表明,在RSDD-SAR数据集上,该方法在交并比阈值为0.5时的平均检测精度达到90.9%,在提高SAR舰船小目标检测精度方面比基准算法YOLOv5提高了6%,显著改善了模型的检测性能.

关键词: 合成孔径雷达(SAR)舰船图像旋转检测注意力机制YOLOv5    
Abstract:

A novel detection algorithm (efficient multi-scale attention (EMA) and small object detection based on YOLOv5, ES-YOLOv5) was proposed by targeting small ship targets in SAR scenes aiming at the issues of inconspicuous imaging features and low detection accuracy caused by arbitrary orientation of small targets in synthetic aperture radar (SAR) imaging. A small target detection layer was added to adjust the receptive field size, making it more suitable for capturing small target scale features and facilitating multi-scale fusion. An EMA mechanism was introduced to focus on key target information and enhance feature representation capability. The circular smooth label (CSL) technique was utilized to adapt to the periodicity of angles, achieving high-precision angle classification. The experimental results demonstrate that the proposed method achieves an average detection accuracy of 90.9% at an intersection over union (IoU) threshold of 0.5 on the RSDD-SAR dataset. The algorithm outperforms the baseline algorithm YOLOv5 by 6% in improving the precision of detecting small SAR ship targets, significantly enhancing the model’s detection performance.

Key words: synthetic aperture radar (SAR)    ship image    rotated detection    attention mechanism    YOLOv5
收稿日期: 2024-03-13 出版日期: 2025-02-11
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(62073164);国家重点研发计划资助项目(2023YFB3907703);上海航天科技创新基金资助项目(SAST2022-013).
作者简介: 薛雅丽(1974—),女,副教授,从事飞行器自适应控制、多智能体协同控制及目标识别的研究. orcid.org/0000-0002-6514-369X. E-mail:xueyali@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
薛雅丽
贺怡铭
崔闪
欧阳权

引用本文:

薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(2): 261-268.

Yali XUE,Yiming HE,Shan CUI,Quan OUYANG. Oriented ship detection algorithm in SAR image based on improved YOLOv5. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 261-268.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.004        https://www.zjujournals.com/eng/CN/Y2025/V59/I2/261

图 1  ES-YOLOv5的结构图
锚框尺寸特征图大小
$ (4 \times 5)(8 \times 10)(22 \times 18) $$160 \times 160$
$ (10 \times 13)(16 \times 30)(33 \times 23) $$80 \times 80$
$ (30 \times 61)(62 \times 45)(59 \times 119) $$40 \times 40$
$ (116 \times 90)(156 \times 198)(373 \times 326) $$20 \times 20$
表 1  ES-YOLOv5网络的锚框尺寸
图 2  EMA模块的结构图
图 3  旋转框的定义
图 4  CSL圆平滑标签
预测类别真实类别
正样本负样本
正样本${\mathrm{TP}}$${\mathrm{FP}}$
负样本${\mathrm{FN}}$${\mathrm{TN}}$
表 2  二分类结果的混淆矩阵
网络类型$P$/%$R$/%${\mathrm{A}}{{\mathrm{P}}_{50}}$/%
A79.579.580.4
B89.884.790.9
表 3  网络A、B的检测结果
模型$P$/%$R$/%${\mathrm{A}}{{\mathrm{P}}_{50}}$/%
Rotated FCOS86.684.386.5
Oriented RCNN84.982.688.6
BBAVectors85.883.689.1
FADet94.394.790.8
本文方法89.884.790.9
表 4  不同算法在RSDD-SAR数据集上的实验结果
图 5  不同算法在RSDD-SAR数据集上的P-R曲线
小目标检测层EMA$P$/%$R$/%${\mathrm{A}}{{\mathrm{P}}_{50}}$/%
88.980.684.9
79.384.186.4
72.075.068.2
89.884.790.9
表 5  消融实验的分析
图 6  引入不同检测模块的算法可视化对比结果
1 XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images [C]// Asian-Pacific Conference on Synthetic Aperture Radar . Xi'an: IEEE, 2009: 506-509.
2 范晋祥, 刘益吉, 李宁, 等 精确打击体系智能化的发展[J]. 空天防御, 2023, 6 (4): 1- 11
FAN Jinxiang, LIU Yiji, LI Ning, et al Development of the intelligentization of precision strike system of systems[J]. Air and Space Defense, 2023, 6 (4): 1- 11
doi: 10.3969/j.issn.2096-4641.2023.04.001
3 张天文. 基于深度学习的SAR图像舰船检测及识别技术研究[D]. 成都: 电子科技大学, 2022.
ZHANG Tianwen. Research on deep learning-based SAR ship detection and recognition technology [D]. Chengdu: University of Electronic Science and Technology of China, 2022.
4 田东. 基于卷积神经网络的深度学习算法研究与实现[D]. 上海: 上海交通大学, 2017.
TIAN Dong. Design and implementation of deep learning algorithm based on convolutional neural network [D]. Shanghai: Shanghai Jiao Tong University, 2017.
5 王昌安. 遥感影像中的近岸舰船目标检测和细粒度识别方法研究[D]. 武汉: 华中科技大学, 2019.
WANG Changan. Detection and fine-grained recognition of inshore ships on optical remote sensing images [D]. Wuhan: Huazhong University of Science and Technology, 2019.
6 KRIZHEVSKY A, SUTSKEVER I, HINTON G E Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60 (6): 84- 90
7 高云龙, 任明, 吴川, 等. 基于注意力机制改进的无锚框SAR图像舰船检测模型[EB/OL]. [2024-10-10]. https://doi.org/10.13229/ j.cnki.jdxbgxb20221367.
8 YASIR M, LIU Shanwei, XU Mingming, et al. Multi scale ship target detection using SAR images based on improved Yolov5[J]. Frontiers in Marine Science, 2023, 9: 2296- 7745
9 富强, 杨威, 陈杰, 等 基于YOLOv5的近岸SAR舰船目标检测方法[J]. 上海航天(中英文), 2022, 39 (3): 67- 76
FU Qiang, YANG Wei, CHEN Jie, et al Detection method for nearshore SAR ship images based on YOLOv5[J]. Aerospace Shanghai (Chinese and English), 2022, 39 (3): 67- 76
10 HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
11 WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision . Munich: Springer, 2018: 3-19.
12 HE Yishan, GAO Fei, WANG Jun, et al Learning polar encodings for arbitrary-oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3846- 3859
doi: 10.1109/JSTARS.2021.3068530
13 SUN Yuanrui, SUN Xian, WANG Zhirui, et al Oriented ship detection based on strong scattering points network in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 18
14 徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 143-167.
15 OUYANG Daliang, HE Su, ZHANG Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning [C]// International Conference on Acoustics . Rhodes Island: IEEE, 2023: 1-5.
16 YANG Xue, YAN Junchi On the arbitrary-oriented object detection: classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130 (5): 1340- 1365
doi: 10.1007/s11263-022-01593-w
17 徐从安, 苏航, 李健伟, 等 RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11 (4): 581- 599
XU Congan, SU Hang, LI Jianwei, et al RSDD-SAR: rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11 (4): 581- 599
doi: 10.12000/JR22007
18 ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690
doi: 10.3390/rs13183690
19 TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 9626-9635.
20 YI Jingru, WU Pengxiang, LIU Bo, et al. Oriented object detection in aerial images with box boundary-aware vectors [C]// IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 2149-2158.
21 XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection [C]// IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3520-3529.
[1] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[2] 冉庆东,郑力新. 基于改进YOLOv5的锂电池极片缺陷检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1811-1821.
[3] 张凌嘉,周欣磊,许月萍,江衍铭. 基于YOLOv5和Mask-RCNN组合模型的社交媒体内涝灾害分析[J]. 浙江大学学报(工学版), 2024, 58(9): 1822-1831.
[4] 李灿林,王新玥,马利庄,邵志文,张文娇. 融合注意力机制和结构线提取的图像卡通化[J]. 浙江大学学报(工学版), 2024, 58(8): 1728-1737.
[5] 李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.
[6] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[7] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[8] 杨军,张琛. 基于边界点估计与稀疏卷积神经网络的三维点云语义分割[J]. 浙江大学学报(工学版), 2024, 58(6): 1121-1132.
[9] 李运堂,李恒杰,张坤,王斌锐,关山越,陈源. 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报(工学版), 2024, 58(6): 1133-1141.
[10] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[11] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[12] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[13] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[14] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[15] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.