计算机技术 |
|
|
|
|
基于改进YOLOv5的SAR图像有向舰船目标检测算法 |
薛雅丽1( ),贺怡铭1,崔闪2,欧阳权1 |
1. 南京航空航天大学 自动化学院,江苏 南京 211106 2. 上海机电工程研究所,上海 201109 |
|
Oriented ship detection algorithm in SAR image based on improved YOLOv5 |
Yali XUE1( ),Yiming HE1,Shan CUI2,Quan OUYANG1 |
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China |
引用本文:
薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(2): 261-268.
Yali XUE,Yiming HE,Shan CUI,Quan OUYANG. Oriented ship detection algorithm in SAR image based on improved YOLOv5. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 261-268.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.004
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I2/261
|
1 |
XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images [C]// Asian-Pacific Conference on Synthetic Aperture Radar . Xi'an: IEEE, 2009: 506-509.
|
2 |
范晋祥, 刘益吉, 李宁, 等 精确打击体系智能化的发展[J]. 空天防御, 2023, 6 (4): 1- 11 FAN Jinxiang, LIU Yiji, LI Ning, et al Development of the intelligentization of precision strike system of systems[J]. Air and Space Defense, 2023, 6 (4): 1- 11
doi: 10.3969/j.issn.2096-4641.2023.04.001
|
3 |
张天文. 基于深度学习的SAR图像舰船检测及识别技术研究[D]. 成都: 电子科技大学, 2022. ZHANG Tianwen. Research on deep learning-based SAR ship detection and recognition technology [D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
4 |
田东. 基于卷积神经网络的深度学习算法研究与实现[D]. 上海: 上海交通大学, 2017. TIAN Dong. Design and implementation of deep learning algorithm based on convolutional neural network [D]. Shanghai: Shanghai Jiao Tong University, 2017.
|
5 |
王昌安. 遥感影像中的近岸舰船目标检测和细粒度识别方法研究[D]. 武汉: 华中科技大学, 2019. WANG Changan. Detection and fine-grained recognition of inshore ships on optical remote sensing images [D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
6 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60 (6): 84- 90
|
7 |
高云龙, 任明, 吴川, 等. 基于注意力机制改进的无锚框SAR图像舰船检测模型[EB/OL]. [2024-10-10]. https://doi.org/10.13229/ j.cnki.jdxbgxb20221367.
|
8 |
YASIR M, LIU Shanwei, XU Mingming, et al. Multi scale ship target detection using SAR images based on improved Yolov5[J]. Frontiers in Marine Science, 2023, 9: 2296- 7745
|
9 |
富强, 杨威, 陈杰, 等 基于YOLOv5的近岸SAR舰船目标检测方法[J]. 上海航天(中英文), 2022, 39 (3): 67- 76 FU Qiang, YANG Wei, CHEN Jie, et al Detection method for nearshore SAR ship images based on YOLOv5[J]. Aerospace Shanghai (Chinese and English), 2022, 39 (3): 67- 76
|
10 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
11 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision . Munich: Springer, 2018: 3-19.
|
12 |
HE Yishan, GAO Fei, WANG Jun, et al Learning polar encodings for arbitrary-oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3846- 3859
doi: 10.1109/JSTARS.2021.3068530
|
13 |
SUN Yuanrui, SUN Xian, WANG Zhirui, et al Oriented ship detection based on strong scattering points network in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 18
|
14 |
徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 143-167.
|
15 |
OUYANG Daliang, HE Su, ZHANG Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning [C]// International Conference on Acoustics . Rhodes Island: IEEE, 2023: 1-5.
|
16 |
YANG Xue, YAN Junchi On the arbitrary-oriented object detection: classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130 (5): 1340- 1365
doi: 10.1007/s11263-022-01593-w
|
17 |
徐从安, 苏航, 李健伟, 等 RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11 (4): 581- 599 XU Congan, SU Hang, LI Jianwei, et al RSDD-SAR: rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11 (4): 581- 599
doi: 10.12000/JR22007
|
18 |
ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690
doi: 10.3390/rs13183690
|
19 |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 9626-9635.
|
20 |
YI Jingru, WU Pengxiang, LIU Bo, et al. Oriented object detection in aerial images with box boundary-aware vectors [C]// IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 2149-2158.
|
21 |
XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection [C]// IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 3520-3529.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|