计算机与控制工程 |
|
|
|
|
基于改进YOLOv5的锂电池极片缺陷检测方法 |
冉庆东1( ),郑力新2,*( ) |
1. 华侨大学 信息科学与工程学院,福建 厦门 361021 2. 华侨大学 工学院,福建 泉州 362021 |
|
Defect detection method of lithium battery electrode based on improved YOLOv5 |
Qingdong RAN1( ),Lixin ZHENG2,*( ) |
1. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China 2. College of Engineering, Huaqiao University, Quanzhou 362021, China |
1 |
朱贺, 杨华, 尹周平 纹理表面缺陷机器视觉检测方法综述[J]. 机械科学与技术, 2023, 42 (8): 1293- 1315 ZHU He, YANG Hua, YIN Zhouping Review of machine vision detection methods for texture surface defects[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42 (8): 1293- 1315
|
2 |
黄梦涛, 连一鑫 基于改进Canny算子的锂电池极片表面缺陷检测[J]. 仪器仪表学报, 2021, 42 (10): 199- 209 HUANG Mengtao, LIAN Yixin Lithium battery electrode plate surface defect detection based on improved Canny operator[J]. Chinese Journal of Scientific Instrument, 2021, 42 (10): 199- 209
|
3 |
黄梦涛, 王露 锂电池极片缺陷特征融合与分类[J]. 制造业自动化, 2021, 43 (10): 61- 63 HUANG Mengtao, WANG Lu Defect feature fusion and classification of lithium battery pole pieces[J]. Manufacturing Automation, 2021, 43 (10): 61- 63
doi: 10.3969/j.issn.1009-0134.2021.10.013
|
4 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision . Heideberg: Springer, 2016: 21−37.
|
5 |
LIN T, GOYAL P, GIRSHICK R, et al Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42 (2): 318- 327
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779−788.
|
7 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 6517−6525.
|
8 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2023-07-23]. https://arxiv. org/abs/1804.02767.
|
9 |
BOCHKOVSKIY A, WANG C Y, LIA O H. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2023-07-25]. https://arxiv. org/abs/2004.10934.
|
10 |
刘国栋. 基于深度学习的锂电池极片表面缺陷检测方法研究[D]. 广州:广东工业大学, 2022. LIU Guodong. Research on surface defect detection method of lithium battery electrode based on deep learning [D]. Guangzhou: Guangdong University of Technology, 2022.
|
11 |
葛钊明, 胡跃明 基于改进YOLOv5的锂电池极片缺陷检测[J]. 激光杂志, 2023, 44 (2): 25- 29 GE Zhaoming, HU Yueming Lithium battery electrode defect detection method based on improved YOLOv5[J]. Laser Journal, 2023, 44 (2): 25- 29
|
12 |
董刚, 谢维成, 黄小龙, 等 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59 (11): 16- 27 DONG Gang, XIE Weicheng, HUANG Xiaolong, et al Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59 (11): 16- 27
doi: 10.3778/j.issn.1002-8331.2211-0377
|
13 |
张艳, 张明路, 吕晓玲, 等 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58 (15): 1- 17 ZHANG Yan, ZHANG Minglu, LU Xiaoling, et al Review of research on small target detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58 (15): 1- 17
doi: 10.3778/j.issn.1002-8331.2112-0176
|
14 |
陈航. 基于深度学习的小目标检测算法研究[D]. 绵阳:西南科技大学, 2023. CHEN Hang. Research on the small object detection algorithm based on deep learning [D]. Mianyang: Southwest University of Science and Technology, 2023.
|
15 |
沈翔. 基于RetinaNet的小目标检测提升方法研究[D]. 南京:南京邮电大学, 2023. SHEN Xiang. Research on the improvement methods for small object detection based on RetinaNet [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023.
|
16 |
吴陈尧. 遥感图像中旋转目标检测方法的设计与实现[D]. 成都:电子科技大学, 2023. WU Chenyao. Design and implementation of rotating object detection method in remote sensing images [D]. Chengdu: University of Electronic Science and Technology of China, 2023.
|
17 |
陈凯. 基于改进级联R-CNN的瓷砖表面瑕疵检测算法[D]. 杭州:浙江理工大学, 2023. CHEN Kai. Tile surface defect detection algorithm based on improved Cascaded R-CNN [D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
|
18 |
张锟. 高分辨率遥感图像目标检测方法研究[D]. 广州:华南理工大学, 2023. ZHANG Kun. Study on objects detection algorithm in high-resolution remote sensing image [D]. Guangzhou: South China University of Technology, 2023.
|
19 |
肖进胜, 赵陶, 周剑, 等 基于上下文增强和特征提纯的小目标检测网络[J]. 计算机研究与发展, 2023, 60 (2): 465- 474 XIAO Jinsheng, ZHAO Tao, ZHOU Jian, et al Small target detection network based on context augmentation and feature refinement[J]. Journal of Computer Research and Development, 2023, 60 (2): 465- 474
doi: 10.7544/issn1000-1239.202110956
|
20 |
DAI J, QI H, XIONG Y, et al. Deformable convolutional networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision . Washington: IEEE, 2017: 764−773.
|
21 |
ZHU X Z, HU H, LIN S, et al. Deformable ConvNets v2: more deformable, better results [C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2019: 9308−9316.
|
22 |
WANG W, DAI J, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable Convolutions [EB/OL]. (2023-04-17) [2023-07-25]. https://arxiv.org/abs/2211.05778.
|
23 |
GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021 [EB/OL]. (2021-08-06) [2023-07-25]. https://arxiv.org/abs/2107.08430.
|
24 |
YANG L, ZHANG R, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks [C]// International Conference on Machine Learning . San Diego: JMLR, 2021: 11863−11874.
|
25 |
ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks [C]// IEEE International Conference on Acoustics, Speech and Signal Processing . Toronto: IEEE, 2021: 2235−2239.
|
26 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11531−11539.
|
27 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 7132−7141.
|
28 |
LI Y, YAO T, PAN Y, et al Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (2): 1489- 1500
|
29 |
GOYAL A, BOCHKOVSKIY A, DENG J, et al. Non-deep networks [EB/OL]. (2021-10-14) [2023-07−25]. https://arxiv. org/abs/2110.07641.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|