自动化技术 |
|
|
|
|
多特征融合的驾驶员疲劳状态检测方法 |
方浩杰1( ),董红召1,*( ),林少轩1,罗建宇2,方勇2 |
1. 浙江工业大学 智能交通系统联合研究所,浙江 杭州 310014 2. 杭州金通科技集团股份有限公司,浙江 杭州 310014 |
|
Driver fatigue state detection method based on multi-feature fusion |
Hao-jie FANG1( ),Hong-zhao DONG1,*( ),Shao-xuan LIN1,Jian-yu LUO2,Yong FANG2 |
1. ITS Joint Research Institute, Zhejiang University of Technology, Hangzhou 310014, China 2. Hangzhou Jintong Technology Group Limited Company, Hangzhou 310014, China |
引用本文:
方浩杰,董红召,林少轩,罗建宇,方勇. 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报(工学版), 2023, 57(7): 1287-1296.
Hao-jie FANG,Hong-zhao DONG,Shao-xuan LIN,Jian-yu LUO,Yong FANG. Driver fatigue state detection method based on multi-feature fusion. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1287-1296.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.003
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1287
|
1 |
HOODA R, JOSHI V, SHAH M A comprehensive review of approaches to detect fatigue using machine learning techniques[J]. Chronic Diseases and Translational Medicine, 2022, 8 (1): 26- 35
doi: 10.1016/j.cdtm.2021.07.002
|
2 |
KUWAHARA A, NISHIKAWA K, HIRAKAWA R, et al Eye fatigue estimation using blink detection based on eye aspect ratio mapping(EARM)[J]. Cognitive Robotics, 2022, 2 (1): 50- 59
|
3 |
ZHANG K, ZHANG Z, LI Z, et al Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23 (10): 1499- 1503
doi: 10.1109/LSP.2016.2603342
|
4 |
GUO X, LI S, YU J, et al. PFLD: a practical facial landmark detector [EB/OL]. (2019-02-28)[2022-07-07]. https://arxiv.org/abs/ 1902.10859v1.
|
5 |
ZHANG Z, PING L, CHEN C L, et al. Facial landmark detection by deep multi-task learning [C]// European Conference on Computer Vision. Cham: Springer, 2014: 94-108.
|
6 |
CHEN L, XIN G, LIU Y, et al Driver fatigue detection based on facial key points and LSTM[J]. Security and Communication Networks, 2021, 2021 (8): 1- 9
doi: 10.1016/S1353-4858(21)00081-7
|
7 |
WANG J, YU X, LIU Q, et al Research on key technologies of intelligent transportation based on image recognition and anti-fatigue driving[J]. EURASIP Journal on Image and Video Processing, 2019, 2019 (1): 1- 13
doi: 10.1186/s13640-018-0395-2
|
8 |
ADHINATA F D, RAKHMADANI P, WIJAYANTO D Fatigue detection on face image using FaceNet algorithm and K-nearest neighbor classifier[J]. Journal of Information Systems Engineering and Business Intelligence, 2021, 7 (1): 22- 30
doi: 10.20473/jisebi.7.1.22-30
|
9 |
PHAM L, VU T H, TRAN T A. Facial expression recognition using residual masking network [C]// 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 4513-4519.
|
10 |
LIU M Z, XU X, HU J, et al Real time detection of driver fatigue based on CNN-LSTM[J]. IET Image Processing, 2022, 16 (2): 576- 595
doi: 10.1049/ipr2.12373
|
11 |
QUDDUS A, ZANDI A S, PREST L, et al Using long short term memory and convolutional neural networks for driver drowsiness detection[J]. Accident Analysis and Prevention, 2021, 156 (1): 106- 107
|
12 |
WEI S, ZHANG X, WEI Z, et al Driver fatigue driving detection based on eye state[J]. International Journal of Digital Content Technology and its Applications, 2011, 5 (10): 307- 314
doi: 10.4156/jdcta.vol5.issue10.36
|
13 |
NOMAN T B, AHAD A R Mobile-based eye-blink detection performance analysis on android platform[J]. Frontiers in ICT, 2018, 5 (4): 91- 100
|
14 |
WORAH G, KHAN A, KOTHARI M, et al Monitor eye-care system using blink detection: a convolutional neural net approach[J]. International Journal of Engineering and Technical Research, 2017, 14 (6): 80- 87
|
15 |
ZHANG F, SU J, GENG L, et al. Driver fatigue detection based on eye state recognition [C]// 2017 International Conference on Machine Vision and Information Technology. Singapore: IEEE, 2017: 105-110.
|
16 |
CHINSATIT W, SAITOH T CNN-based pupil center detection for wearable gaze estimation system[J]. Applied Computational Intelligence and Soft Computing, 2017, 11 (5): 1- 10
|
17 |
YU J, ZHANG Y. A driving early warning method based on multi-factor fusion [C]// 2021 3rd International Conference on Applied Machine Learning. Stockholm: IEEE, 2021: 319-324.
|
18 |
HU X, HUANG B. Face detection based on SSD and CamShift [C]// 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference. Chongqing: IEEE, 2020: 2324-2328.
|
19 |
XIANG Y, YANG H, HU R, et al. Comparison of the deep learning methods applied on human eye detection [C]// 2021 IEEE International Conference on Power Electronics, Computer Applications. Shenyang: IEEE, 2021: 314-318.
|
20 |
YUAN Y, DAI F, SONG Y, et al. On fatigue driving detection system based on deep learning [C]// Chinese Intelligent Systems Conference. Singapore: Springer, 2020: 734-741.
|
21 |
SUN X, WU P, HOI S Face detection using deep learning: an improved faster RCNN approach[J]. Neurocomputing, 2018, 299 (19): 42- 50
|
22 |
YAO Z, SONG X, ZHAO L, et al Real-time method for traffic sign detection and recognition based on YOLOv3-tiny with multiscale feature extraction[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235 (7): 1978- 1991
doi: 10.1177/0954407020980559
|
23 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
24 |
董红召, 方浩杰, 张楠 旋转框定位的多尺度再生物品目标检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (1): 16- 25 DONG Hong-zhao, FANG Hao-jie, ZHANG Nan Multi-scale object detection algorithm for recycled objects based on rotating block positioning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 16- 25
|
25 |
胡峰松, 程哲坤, 徐青云, 等 基于多特征融合的疲劳驾驶状态识别方法研究[J]. 湖南大学学报: 自然科学版, 2022, 49 (4): 100- 107 HU Feng-song, CHENG Zhe-kun, XU Qing-yun, et al Research on fatigue driving state recognition method based on multi-feature fusion[J]. Journal of Hunan University: Natural Sciences, 2022, 49 (4): 100- 107
|
26 |
张姝玮, 郭忠印, 杨轸, 等 驾驶行为多重分形特征在驾驶疲劳检测中的应用[J]. 吉林大学学报: 工学版, 2021, 51 (2): 557- 564 ZHANG Shu-wei, GUO Zhong-yin, YANG Zhen, et al Application of multi-fractal features of driving performance in driver fatigue detection[J]. Journal of Jilin University: Engineering and Technology Edition, 2021, 51 (2): 557- 564
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|