计算机技术 |
|
|
|
|
面向垃圾分类场景的轻量化目标检测方案 |
陈健松( ),蔡艺军*( ) |
厦门理工学院 光电与通信工程学院,福建 厦门 361024 |
|
Lightweight object detection scheme for garbage classification scenario |
Jiansong CHEN( ),Yijun CAI*( ) |
School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China |
1 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
2 |
HE K M, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916
doi: 10.1109/TPAMI.2015.2389824
|
3 |
GIRSHICK R. Fast R-CNN [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
|
4 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
5 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2015: 6517-6525.
|
6 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector [C]// 14th European Conference on Computer Vision. [S. l. ]: Springer, 2016: 21-37.
|
7 |
李小波, 李阳贵, 郭宁, 等 融合注意力机制的Yolov5口罩检测算法[J]. 图学学报, 2023, 44 (1): 16- 25 LI Xiaobo, LI Yanggui, GUO ning, et al Yolov5 mask detection algorithm integrating attention mechanism[J]. Journal of Graphics, 2023, 44 (1): 16- 25
|
8 |
代牮, 赵旭, 李连鹏, 等 基于改进Yolov5的复杂背景红外弱小目标检测算法[J]. 红外技术, 2022, 44 (5): 504- 512 DAI Xuan, ZHAO Xu, LI Lianpeng, et al Infrared dim small target detection algorithm based on improved Yolov5 in complex background[J]. Infrared Technology, 2022, 44 (5): 504- 512
|
9 |
李仁鹰, 钱慧芳, 郭佳豪, 等 基于M-Yolov4模型的轻量化目标检测算法[J]. 国外电子测量技术, 2022, 41 (4): 15- 21 LI Renying, QIAN Huifang, GUO Jiahao, et al Lightweight target detection algorithm based on M-Yolov4 model[J]. Foreign Electronic Measurement Technology, 2022, 41 (4): 15- 21
doi: 10.19652/j.cnki.femt.2103482
|
10 |
王晨, 袁庆霓, 白欢, 等 面向仓储货物的轻量化目标检测算法[J]. 激光与光电子学进展, 2022, 59 (24): 74- 80 WANG Chen, YUAN Qingni, BAI Huan, et al Lightweight object detection algorithm for warehousing goods[J]. Progress in Laser and Optoelectronics, 2022, 59 (24): 74- 80
|
11 |
秦伟伟, 宋泰年, 刘洁瑜 基于轻量化 Yolov3的遥感军事目标检测算法[J]. 计算机工程与应用, 2021, 57 (21): 263- 269 QIN Weiwei, SONG Tainian, LIU Jieyu Remote sensing military target detection algorithm based on lightweight Yolov3[J]. Computer Engineering and Application, 2021, 57 (21): 263- 269
doi: 10.3778/j.issn.1002-8331.2106-0026
|
12 |
王相友, 李晏兴, 杨振宇, 等 基于改进Yolov4模型的马铃薯中土块石块检测方法[J]. 农业机械学报, 2021, 52 (8): 241- 247 WANG Xiangyou, LI Yanxing, YANG Zhenyu, et al Detection method of soil and stone in potato based on improved Yolov4 model[J]. Journal of Agricultural Machinery, 2021, 52 (8): 241- 247
|
13 |
陈田, 黄家才, 张铎, 等 基于深度学习的移动机器人障碍物检测研究[J]. 南京工程学院学报: 自然科学版, 2022, 20 (2): 8- 12 CHEN Tian, HUANG Jiacai, ZHANG Duo, et al Research on obstacle detection of mobile robots based on deep learning[J]. Journal of Nanjing Institute of Engineering: Natural Science Edition, 2022, 20 (2): 8- 12
|
14 |
杨小冈, 高凡, 卢瑞涛, 等 基于改进Yolov5的轻量化航空目标检测方法[J]. 信息与控制, 2022, 51 (3): 361- 368 YANG Xiaogang, GAO Fan, LU Ruitao, et al A lightweight aerial target detection method based on improved Yolov5[J]. Information and Control, 2022, 51 (3): 361- 368
doi: 10.13976/j.cnki.xk.2021.1240
|
15 |
李志刚, 张娜. 一种轻量型Yolov5交通标志识别方法[J]. 电讯技术, 2022, 62(9): 1201-1206. LI Zhigang, ZHANG Na. A lightweight Yolov5 traffic sign recognition method [J/OL]. Tel-Ecommunication Technology, 2022, 62(9): 1201-1206.
|
16 |
倪伟健, 秦会斌 GSDCPeleeNet: 基于PeleeNet的高效轻量化卷积神经网络[J]. 电子技术应用, 2021, 47 (3): 22- 26 NI Weijian, QIN Huibin GSDCPeleeNet: efficient lightweight convolutional neural network based on PeleeNet[J]. Electronic Technology Application, 2021, 47 (3): 22- 26
|
17 |
刘宇宸, 石刚, 崔青, 等 改进MobileNetv3-Yolov3交通标志牌检测算法[J]. 东北师大学报: 自然科学版, 2022, 54 (2): 53- 60 LIU Yuchen, SHI Gang, CUI Qing, et al Improved MobileNetv3-Yolov3 traffic sign detection algorithm[J]. Journal of Northeast Normal University: Natural Science Edition, 2022, 54 (2): 53- 60
|
18 |
王静, 白云 基于改进Yolov5s的车辆目标检测算法[J]. 信息与电脑(理论版), 2022, 34 (10): 80- 83 WANG Jing, BAI Yun Vehicle target detection algorithm based on improved Yolov5s[J]. Information and Computer (Theoretical Edition), 2022, 34 (10): 80- 83
|
19 |
罗安能, 万海斌, 司志巍, 等 基于改进Yolov5s的可回收垃圾的检测算法[J]. 激光与光电子学进展, 2023, 60 (10): 130- 137 LUO Anneng, WAN Haibin, SI Zhiwei, et al Detection algorithm of recyclable garbage based on improved Yolov5s[J]. Progress in Laser and Optoelectronics, 2023, 60 (10): 130- 137
|
20 |
闫彬, 樊攀, 王美茸, 等 基于改进Yolov5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报, 2022, 53 (9): 28- 38 YAN Bin, FAN Pan, WANG Meirong, et al Real time recognition of apple picking method based on improved YoloV5m picking robot[J]. Journal of Agricultural Machinery, 2022, 53 (9): 28- 38
|
21 |
邢晋超, 潘广贞 改进Yolov5s的手语识别算法研究[J]. 计算机工程与应用, 2022, 58 (16): 194- 203 XING Jinchao, PAN Guangzhen Research on improved Yolov5s sign language recognition algorithm[J]. Computer Engineering and Application, 2022, 58 (16): 194- 203
|
22 |
龙赛, 宋晓凤, 张苏, 等 改进Yolov5s的航拍图像车辆检测研究[J]. 激光杂志, 2022, 43 (10): 22- 29 LONG Sai, SONG Xiaofeng, ZHANG Su, et al Research on improving Yolov5s aerial image vehicle detection[J]. Laser Magazine, 2022, 43 (10): 22- 29
doi: 10.14016/j.cnki.jgzz.2022.10.022
|
23 |
王晓雯, 梁博, 刘芳芳 基于注意力机制与加权盒函数的Yolov5的行人摔倒检测算法[J]. 山西大学学报: 自然科学版, 2023, 46 (2): 334- 341 WANG Xiaowen, LIANG Bo, LIU Fang-fang Yolov5 pedestrian fall detection algorithm based on attention mechanism and weighted box function[J]. Journal of Shanxi University: Natural Science Edition, 2023, 46 (2): 334- 341
|
24 |
王文胜, 李继旺, 吴波, 等 基于Yolov5交通标志识别的智能车设计[J]. 国外电子测量技术, 2021, 40 (10): 158- 164 WANG Wensheng, LI Jiwang, WU Bo, et al Intelligent vehicle design based on Yolov5 traffic sign recognition[J]. Foreign Electronic Measurement Technology, 2021, 40 (10): 158- 164
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|