计算机技术 |
|
|
|
|
基于多模态融合的开放域三维模型检索算法 |
毛福新1( ),杨旭1,程嘉强2,彭涛3 |
1. 天津职业技术师范大学 工程实训中心,天津 300222 2. 天津华大科技有限公司,天津 300131 3. 天津职业技术师范大学 汽车与交通学院,天津 300222 |
|
Open-set 3D model retrieval algorithm based on multi-modal fusion |
Fuxin MAO1( ),Xu YANG1,Jiaqiang CHENG2,Tao PENG3 |
1. Engineering Training Center, Tianjin University of Technology and Education, Tianjin 300222, China 2. Tianjin Huada Technology Limited Company, Tianjin 300131, China 3. College of Automobile and Transportation, Tianjin University of Technology and Education, Tianjin 300222, China |
引用本文:
毛福新,杨旭,程嘉强,彭涛. 基于多模态融合的开放域三维模型检索算法[J]. 浙江大学学报(工学版), 2024, 58(1): 61-70.
Fuxin MAO,Xu YANG,Jiaqiang CHENG,Tao PENG. Open-set 3D model retrieval algorithm based on multi-modal fusion. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 61-70.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.007
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I1/61
|
1 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3d shape recognition [C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 945- 953.
|
2 |
QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3d classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 652-660.
|
3 |
FENG Y, FENG Y, YOU H, et al. Meshnet: mesh neural network for 3d shape representation [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019, 33(1): 8279-8286.
|
4 |
KLOKOV R, LEMPITSKY V. Escape from cells: deep kd-networks for the recognition of 3d point cloud models [C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 863- 872.
|
5 |
HAN Z, LU H, LIU Z, et al 3D2SeqViews: aggregating sequential views for 3D global feature learning by CNN with hierarchical attention aggregation[J]. IEEE Transactions on Image Processing, 2019, 28 (8): 3986- 3999
|
6 |
LI B, LU Y, LI C, et al A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries[J]. Computer Vision and Image Understanding, 2015, 131: 1- 27
doi: 10.1016/j.cviu.2014.10.006
|
7 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems. Long Beach: [s. n. ], 2017: 5998--6008.
|
8 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale [C]// International Conference on Learning Representations. Vienna: [s. n. ], 2021.
|
9 |
FENG Y, GAO Y, ZHAO X, et al SHREC’22 track: open-set 3D object retrieval[J]. Computers and Graphics, 2022, 107: 231- 240
doi: 10.1016/j.cag.2022.07.020
|
10 |
OSADA R, FUNKHOUSER T, CHAZELLE B, et al Shape distributions[J]. ACM Transactions on Graphics, 2002, 21 (4): 807- 832
doi: 10.1145/571647.571648
|
11 |
TABIA H, DAOUDI M, VANDEBORRE J P, et al A new 3D-matching method of nonrigid and partially similar models using curve analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33 (4): 852- 858
|
12 |
AVETISYAN A, DAI A, NIEßNER M. End-to-end cad model retrieval and 9dof alignment in 3d scans [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2551-2560.
|
13 |
SARKAR K, HAMPIHOLI B, VARANASI K, et al. Learning 3d shapes as multi-layered height-maps using 2d convolutional networks [C]// Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 71-86.
|
14 |
YANG Z, WANG L. Learning relationships for multi-view 3D object recognition [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 7505-7514.
|
15 |
HUANG Q, WANG Y, YIN Z View-based weight network for 3D object recognition[J]. Image and Vision Computing, 2020, 93: 103828
doi: 10.1016/j.imavis.2019.11.006
|
16 |
SFIKAS K, PRATIKAKIS I, THEOHARIS T Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval[J]. Computers and Graphics, 2018, 71: 208- 218
doi: 10.1016/j.cag.2017.12.001
|
17 |
PÉREZ-RÚA J M, VIELZEUF V, PATEUX S, et al. MFAS: multimodal fusion architecture search [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6966-6975.
|
18 |
ZHANG Q, LIU Y, BLUM R S, et al Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review[J]. Information Fusion, 2018, 40: 57- 75
doi: 10.1016/j.inffus.2017.05.006
|
19 |
HOU M, TANG J, ZHANG J, et al. Deep multimodal multilinear fusion with high-order polynomial pooling [C]// Advances in Neural Information Processing Systems. Vancouver: [s. n.], 2019.
|
20 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// 3rd International Conference on Learning Representations. San Diego: IEEE, 2015.
|
21 |
MATURANA D, SCHERER S. Voxnet: a 3d convolutional neural network for real-time object recognition [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2015: 922-928.
|
22 |
FENG Y, FENG Y, YOU H, et al. Meshnet: mesh neural network for 3d shape representation [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 8279-8286.
|
23 |
DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: [s. n. ], 2019: 4171—4186.
|
24 |
WU Z, SONG S, KHOSLA A, et al. 3d shapenets: a deep representation for volumetric shapes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920.
|
25 |
FENG Y, ZHANG Z, ZHAO X, et al. Gvcnn: group-view convolutional neural networks for 3d shape recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 264-272.
|
26 |
HAN Z, SHANG M, LIU Z, et al SeqViews2SeqLabels: learning 3D global features via aggregating sequential views by RNN with attention[J]. IEEE Transactions on Image Processing, 2018, 28 (2): 658- 672
|
27 |
QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space [C]// Advances in Neural Information Processing Systems. Long Beach: [s. n. ], 2017: 5099-5108.
|
28 |
LI Y, BU R, SUN M, et al. Pointcnn: convolution on x- transformed points [C]// Advances in Neural Information Processing Systems. Montreal: [s. n. ], 2018: 828-838.
|
29 |
ZHANG K, HAO M, WANG J, et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features [EB/OL]. [2022-11-08]. https://arxiv.org/abs/1904.10014.
|
30 |
LU Y, WU Y, LIU B, et al. Cross-modality person reidentification with shared-specific feature transfer [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13379-13389.
|
31 |
KRISHNA K, MURTY M N Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29 (3): 433
doi: 10.1109/3477.764879
|
32 |
MURTAGH F, CONTRERAS P Algorithms for hierarchical clustering: an overview[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2 (1): 86- 97
doi: 10.1002/widm.53
|
33 |
KHAN K, REHMAN S U, AZIZ K, et al. DBSCAN: past, present and future [C]// 5th International Conference on the Applications of Digital Information and Web Technologies. New York: IEEE, 2014: 232-238.
|
34 |
GHULI P, SHUKLA A, KIRAN R, et al Multidimensional canopy clustering on iterative MapReduce framework using Elefig tool[J]. IETE Journal of Research, 2015, 61 (1): 14- 21
doi: 10.1080/03772063.2014.988760
|
35 |
LU Y, TIAN Z, PENG P, et al GMM clustering for heating load patterns in-depth identification and prediction model accuracy improvement of district heating system[J]. Energy and Buildings, 2019, 190: 49- 60
doi: 10.1016/j.enbuild.2019.02.014
|
36 |
VAN DER MAATEN L, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605
|
37 |
WATTENBERG M, VIÉGAS F, JOHNSON I How to use t-SNE effectively[J]. Distill, 2016, 1 (10): e2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|