自动化技术、信息工程 |
|
|
|
|
无监督的三维模型簇对应关系协同计算 |
杨军1,2(),李金泰1,高志明1 |
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 2. 兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070 |
|
Unsupervised co-calculation on correspondence of three-dimensional shape collections |
Jun YANG1,2(),Jin-tai LI1,Zhi-ming GAO1 |
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China |
1 |
SAHILLIOGLU Y Recent advances in shape correspondence[J]. The Visual Computer, 2020, 36 (8): 1705- 1721
doi: 10.1007/s00371-019-01760-0
|
2 |
BESL P J, MCKAY N D Method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239- 256
doi: 10.1109/34.121791
|
3 |
OVSJANIKOV M, BEN C M, SOLOMON J, et al Functional maps: a flexible representation of maps between shapes[J]. ACM Transactions on Graphics, 2012, 31 (4): 30
|
4 |
OVSJANIKOV M, CORMAN E, BRONSTEIN M, et al. Computing and processing correspondences with functional maps [EB/OL]. [2021-06-01]. http://hal.inria.fr/hal-01664767/file/siggraph17_course_notes.pdf.
|
5 |
CHEN M, WANG C, QIN H Jointly learning shape descriptors and their correspondence via deep triplet CNNs[J]. Computer Aided Geometric Design, 2018, 62 (5): 192- 205
|
6 |
GROUEIX T, FISHER M, KIM V G, et al. 3D-CODED: 3D correspondences by deep deformation [C]// European Conference on Computer Vision. Munich: Springer, 2018: 235-251.
|
7 |
GINZBURG D, RAVIV D. Cyclic functional mapping: self-supervised correspondence between non-isometric deformable shapes [M]. Cham: Springer, 2020.
|
8 |
AYGUN M, LAHNER Z, CREMERS D. Unsupervised dense shape correspondence using heat kernels [C]// International Conference on 3D Vision. Fukuoka: IEEE, 2020: 573-582.
|
9 |
KIM V G, LI W, MITRA N J, et al Exploring collections of 3D models using fuzzy correspondences[J]. ACM Transactions on Graphics, 2012, 31 (4): 54
|
10 |
HUANG Q X, GUO X An optimization approach for extracting and encoding consistent maps in a shape collection[J]. ACM Transactions on Graphics, 2012, 31 (6): 654- 660
|
11 |
HUANG Q, WANG F, GUIBAS L Functional map networks for analyzing and exploring large shape collections[J]. ACM Transactions on Graphics, 2014, 33 (4): 1- 11
|
12 |
HUANG R, REN J, WONKA P, et al Consistent zoomout: efficient spectral map synchronization[J]. Computer Graphics Forum, 2020, 39 (5): 265- 278
doi: 10.1111/cgf.14084
|
13 |
REN J, POULENARD A, WONKA P, et al Continuous and orientation-preserving correspondences via functional maps[J]. ACM Transactions on Graphics, 2019, 37 (6): 248- 263
|
14 |
杨军, 闫寒 校准三维模型基矩阵的函数映射的对应关系计算[J]. 武汉大学学报·信息科学版, 2018, 43 (10): 1518- 1525 YANG Jun, YAN Han Correspondence calculation of functional maps for calibrating the base matrix of 3D model[J]. Geomatics and Information Science of Wuhan University, 2018, 43 (10): 1518- 1525
|
15 |
WU Y, YANG J, ZHAO J L Partial 3D shape functional correspondence via fully spectral eigenvalue alignment and upsampling refinement[J]. Computers and Graphics, 2020, 92 (6): 99- 113
doi: 10.1016/j.cag.2020.09.004
|
16 |
EISENBERGER M, LAHNER Z, CREMERS D. Smooth shells: multi-scale shape registration with functional maps [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12265-12274.
|
17 |
LITANY O, REMEZ T, RODOLA E, et al. Deep functional maps: structured prediction for dense shape correspondence [C]// International Conference on Computer Vision. Venice: IEEE, 2017: 5659-5667.
|
18 |
HALIMI O, LITANY O, RODOLA E, et al. Unsupervised learning of dense shape correspondence [C]// Conference on Computer Vision and Pattern Recognition. Los Angeles: IEEE, 2019: 4370-4379.
|
19 |
DONATI N, SHARMA A, OVSJANIKOV M. Deep geometric functional maps: robust feature learning for shape correspondence [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8592-8601.
|
20 |
HUANG Q, GUIBAS L Consistent shape maps via semidefinite programming[J]. Computer Graphics Forum, 2013, 32 (5): 177- 186
doi: 10.1111/cgf.12184
|
21 |
KIM V G, LI W, MITRA N J, et al Learning part-based templates from large collections of 3D shapes[J]. ACM Transactions on Graphics, 2013, 32 (4): 1- 12
|
22 |
COSMO L, RODOLA E, ALBARELLI A, et al Consistent partial matching of shape collections via sparse modeling[J]. Computer Graphics Forum, 2017, 36 (1): 209- 221
doi: 10.1111/cgf.12796
|
23 |
杨军, 雷鸣 结合函数映射与循环一致性约束的模型簇对应关系计算[J]. 激光与光电子学进展, 2019, 56 (8): 123- 133 YANG Jun, LEI Ming Correspondence calculation of shape collections by functional maps combined with cycle-consistency constraints[J]. Laser and Optoelectronics Progress, 2019, 56 (8): 123- 133
|
24 |
BERNARD F, THUNBERG J, SWOBODA, et al. HiPPI: higher-order projected power iterations for scalable multi-matching [C]// International Conference on Computer Vision. Seoul: IEEE, 2019: 10284-10293.
|
25 |
HUANG Q X, SU H, GUIBAS L Fine-grained semi-supervised labeling of large shape collections[J]. ACM Transactions on Graphics, 2013, 32 (6): 1- 10
|
26 |
FISH N, KAICK O V, BERMANO A, et al Structure-oriented networks of shape collections[J]. ACM Transactions on Graphics, 2016, 35 (6): 1- 14
|
27 |
HUANG Q, LIANG Z, WANG H, et al Tensor maps for synchronizing heterogeneous shape collections[J]. ACM Transactions on Graphics, 2019, 38 (4): 1- 18
|
28 |
GROUEIX T, FISHER M, KIM V G, et al Unsupervised cycle-consistent deformation for shape matching[J]. Computer Graphics Forum, 2019, 38 (5): 123- 133
doi: 10.1111/cgf.13794
|
29 |
WANG Y, SUN Y, LIU Z, et al Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38 (5): 1- 12
|
30 |
WANG Y, SOLOMON J M. Deep closest point: learning representations for point cloud registration [C]// International Conference on Computer Vision. Seoul: IEEE, 2019: 3523-3532.
|
31 |
GINZBURG D, DAN R. Dual geometric graph network (DG2N): iterative network for deformable shape alignment [C]// International Conference on 3D Vision. [S. l.]: IEEE, 2021: 1341-1350.
|
32 |
REN J, PANINE M, WONKA P, et al Structured regularization of functional map computations[J]. Computer Graphics Forum, 2019, 38 (5): 39- 53
doi: 10.1111/cgf.13788
|
33 |
BOGO F, ROMERO J, LOPER M, et al. FAUST: Dataset and evaluation for 3D mesh registration [C]// Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 3794-3801.
|
34 |
ANGUELOV D, SRINIVASAN P, KOLLER D, et al SCAPE: shape completion and animation of people[J]. ACM Transactions on Graphics, 2005, 24 (3): 408- 416
doi: 10.1145/1073204.1073207
|
35 |
BRONSTEIN A M, BRONSTEIN M M, KIMMEL R. Numerical geometry of non-rigid shapes [M]. Berlin: Springer, 2008.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|