| 土木工程、水利工程、交通工程 |
|
|
|
|
| 基于能量模型的行人与车辆再识别方法 |
张师林( ),郭红南,刘轩 |
| 北方工业大学 城市道路交通智能控制技术北京市重点实验室,北京 100144 |
|
| Person and vehicle re-identification based on energy model |
Shi-lin ZHANG( ),Hong-nan GUO,Xuan LIU |
| Beijing Key Laboratory of Traffic Intelligent Control, North China University of Technology, Beijing 100144, China |
| 1 |
LIU W, WEN Y, YU Z, et al. Sphere face: deep hypersphere embedding for face recognition [C]// Proceedings of the Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 6738-6746.
|
| 2 |
DENG J K, GUO J, XUE N N, et al. Arcface: additive angular margin loss for deep face recognition [C]// Proceedings of the Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4685-4694.
|
| 3 |
WANG F, CHENG L, LIU W Additive margin Soft-max for face verification[J]. IEEE Signal Processing Letters, 2018, 25 (7): 926- 930
doi: 10.1109/LSP.2018.2822810
|
| 4 |
JIQUAN N, CHEN Z H, PANG W, et al. Learning deep energy models [C]// Proceedings of the 28th International Conference on Machine Learning, Washington: Omnipress, 2011: 1105-1112.
|
| 5 |
TAESUP K , YOSHUA B. Deep directed generative models with energy-based probability estimation [C]// Proceedings of the European Conference of Computer Vision. Amsterdam: Springer, 2016: 123-130.
|
| 6 |
YANN L, SUMIT C, RAIA H. A tutorial on energy-based learning [M]// Predicting structured data. Boston: MIT Press, 2006.
|
| 7 |
RITHESH K, ANIRUDH G, AARON C, et al. Maximum entropy generators for energy based models [C]// Proceedings of the International Conference on Computer Vision. Seoul: IEEE, 2019: 1701-1711.
|
| 8 |
LIU W T, WANG X Y, OWENS J. Energy-based out-of-distribution detection [C]// Proceedings of the Neural Information Processing System. Canada: IEEE, 2020: 112-123.
|
| 9 |
ZHOU K Y, YANG Y X, CAVALLARO A. Omni-scale feature learning for person re-identification [C]// Proceedings of the International Conference on Computer Vision. Seoul: IEEE, 2019: 3701-3711.
|
| 10 |
ZHENG L, SHEN L Y, TIAN L. Scalable person re-identification: a benchmark [C]// Proceedings of the Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1116-1124.
|
| 11 |
RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking [C]// Proceedings of the European Conference of Computer Vision. Amsterdam: Springer, 2016: 17-35.
|
| 12 |
WEI L H, ZHANG S L, GAO W, et al. Person transfer gan to bridge domain gap for person re-identification [C]// Proceedings of the Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 79-88.
|
| 13 |
LIU X C, LIU W, MEI T. A deep learning-based approach to progressive vehicle re-identification for urban surveillance [C]// Proceedings of the European Conference of Computer Vision. Amsterdam: Springer, 2016: 123-130.
|
| 14 |
LIU H Y, TIAN Y H, WANG Y W. Deep relative distance learning: tell the difference between similar vehicles [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Nevada: IEEE, 2016: 2167-2175.
|
| 15 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Nevada: IEEE, 2016: 116-124.
|
| 16 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]// Proceedings of the Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 7794-7803.
|
| 17 |
WEN Y, ZHANG K, LI Z. A discriminative feature learning approach for deep face recognition [C]// Proceedings of the European Conference of Computer Vision. Amsterdam: Springer, 2016: 23-30.
|
| 18 |
ALEXANDER H, LUCAS B, BASTIAN L. In defense of the triplet loss for person re-identification [C]// Proceedings of the International Conference on Computer Vision. Seoul: Springer, 2018: 1132-1139.
|
| 19 |
ZHONG Z, ZHENG L, ZHENG Z D, et al Camstyle: a novel data augmentation method for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28 (3): 1176- 1190
doi: 10.1109/TIP.2018.2874313
|
| 20 |
QIAN X L, FU Y W, XIANG T, et al. Pose-normalized image generation for person re-identification [C]// Proceedings of the European Conference of Computer Vision. Munich: Springer, 2018: 1123-1132.
|
| 21 |
WANG G S, YUAN Y F, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification [C]// Proceedings of the ACM Multimedia Conference on Multimedia Conference. Seoul: ACM, 2018: 1123-1132.
|
| 22 |
ZHENG F, DENG C, SUN X, et al. Pyramidal person re-identification via multi-loss dynamic training [C]// Proceedings of the Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 134-143.
|
| 23 |
CHEN T S, XU M X, HUI X L, et al. Learning semantic-specific graph representation for multi-label image recognition [C]// Proceedings of the International Conference on Computer Vision. Seoul: Springer, 2019: 2132-2139.
|
| 24 |
SUN Y F, ZHENG L, YANG Y. Beyond part models: person retrieval with refined part pooling and a strong convolutional baseline [C]// Proceedings of the European Conference of Computer Vision. Munich: Springer, 2018: 25-32.
|
| 25 |
KAKAYEH M M, BASRARN E. Human semantic parsing for person re-identification [C]// Proceedings of the Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 99--107.
|
| 26 |
LEI Q, JING H, LEI W, et al. Maskreid: a mask based deep ranking neural network for person re-identification [C]// Proceedings of the International Conference of Multimedia Exposition. Shanghai: IEEE, 2019: 1138-1145.
|
| 27 |
FAN X, LUO H, ZHANG X, et al. SCPNet: spatial-channel parallelism network for joint holistic and partial person re-identification [C]// Proceedings of the Asian Conference of Computer Vision. Kyoto: IEEE, 2019: 2351-2359.
|
| 28 |
LI W, ZHU X T, GONG S G. Harmonious attention network for person re-identification [C]// Proceedings of the Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 1324—1332.
|
| 29 |
SUN Y F, ZHENG L, DENG W J, et al. SVDNet for pedestrian retrieval[C]// Proceedings of the Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 99-107.
|
| 30 |
HE S, LUO H, WANG P C, et al. TransReID: transformer-based object re-identification [C]// Proceedings of the Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 151-159.
|
| 31 |
ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 345-352.
|
| 32 |
LIU X C, LIU W, MEI T, et al. A deep learning-based approach to progressive vehicle re-identification for urban surveillance [C]// Proceedings of the European Conference of Computer Vision. Amsterdam: Springer, 2016: 123-130.
|
| 33 |
CHU R H, SUN Y F, LI Y D, et al. Vehicle re-identification with viewpoint aware metric learning [C]// Proceedings of the International Conference on Computer Vision. Seoul: Springer, 2019: 1132-1139.
|
| 34 |
LIU X B, ZHANG S L, HUANG Q M, et al. Ram: a region-aware deep model for vehicle re-identification [C]// Proceedings of the International Conference of Multimedia Exposition. San Diego: IEEE, 2018: 138-145.
|
| 35 |
ZHOU Y, SHAO L. Vehicle re-identification by adversarial bi-directional LSTM network [C]// Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Salt Lake City: IEEE, 2018: 1123-1132.
|
| 36 |
ZHOU Y, SHAO L. Viewpoint-aware attentive multi-view inference for vehicle re-identification [C]// Proceedings of the Computer Vision and Pattern Recognition. Utah: IEEE, 2018: 324-332.
|
| 37 |
LIU X C, LIU W, MEI T, et al PROVID: progressive and multimodal vehicle reidentification for large-scale urban surveillance[J]. IEEE Transactions on Multimedia, 2018, 20 (3): 645- 658
doi: 10.1109/TMM.2017.2751966
|
| 38 |
KHORRAMSHAHI P, KUMAR A, PERI N, et al. A dual-path model with adaptive attention for vehicle re-identification [C]// Proceedings of the International Conference on Computer Vision. Seoul: Springer, 2019: 132-139.
|
| 39 |
ZHU J Q, ZENG H Q, HUANG J C, et al Vehicle re-identification using quadruple directional deep learning features[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (1): 1- 11
|
| 40 |
HE B, LI J, ZHAO Y, et al. Part-regularized near-duplicate vehicle re-identification [C]// Proceedings of the Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 154-163.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|