计算机与控制工程 |
|
|
|
|
基于自适应采样的复杂模型全局近似 |
殷小亮(),钱承*() |
嘉兴学院 信息科学与工程学院,浙江 嘉兴 314001 |
|
Global approximation of complex model based on adaptive sampling |
Xiao-liang YIN(),Cheng QIAN*() |
College of information science and engineering, Jiaxing University, Jiaxing 314001, China |
1 |
BÖTTCHER M, FUCHS A, LEICHSENRING F, et al ELSA: an efficient, adaptive ensemble learning-based sampling approach[J]. Advances in Engineering Software, 2021, 154: 102974
doi: 10.1016/j.advengsoft.2021.102974
|
2 |
BECK J, GUILLAS S Sequential design with mutual information for computer experiments (MICE): emulation of a tsunami model[J]. SIAM/ASA Journal Uncertainty Quantification, 2016, 4 (1): 739- 766
doi: 10.1137/140989613
|
3 |
GRATIET L L, CANNAMELA C Kriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes[J]. Technometrics, 2015, 57 (3): 418- 427
doi: 10.1080/00401706.2014.928233
|
4 |
LIU H, XU S, MA Y, et al An adaptive Bayesian sequential sampling approach for global metamodeling[J]. Journal of Mechanical Design, 2016, 138 (1): 011404
|
5 |
KUCHERENKO S, GIAMALAKIS D, SHAH N, et al Computationally efficient identification of probabilistic design spaces through application of metamodeling and adaptive sampling[J]. Computers and Chemical Engineering, 2019, 132: 106608
|
6 |
郭述臻, 昂海松, 蔡红明 一种自适应抽样的代理模型构建及其在复材结构优化中的应用[J]. 复合材料学报, 2018, 35 (8): 2084- 2094 GUO Shu-zhen, ANG Hai-song, CAI Hong-ming Construction of an adaptive sampling surrogate model and application in composite material structure optimization[J]. Acta Materiae Compositae Sinica, 2018, 35 (8): 2084- 2094
|
7 |
AJDARI A, MAHLOOJI H An adaptive exploration-exploitation algorithm for constructing metamodels in random simulation using a novel sequential experimental design[J]. Communications in Statistics: Simulation and Computation, 2013, 43 (5): 947- 968
|
8 |
EASON J, CREMASCHI S Adaptive sequential sampling for surrogate model generation with artificial neural networks[J]. Computers and Chemical Engineering, 2014, 68 (68): 220- 232
|
9 |
LIU H, XU S, WANG X, et al Optimal weighted pointwise ensemble of radial basis functions with different basis functions[J]. AIAA Journal, 2016, 54 (10): 3117- 3133
doi: 10.2514/1.J054664
|
10 |
JIANG P, SHU L, ZHOU Q, et al A novel sequential exploration-exploitation sampling strategy for global metamodeling[J]. IFAC-PapersOnLine, 2015, 48 (28): 532- 537
doi: 10.1016/j.ifacol.2015.12.183
|
11 |
STEINER M, BOURINET J M, LAHMER T An adaptive sampling method for global sensitivity analysis based on least-squares support vector regression[J]. Reliability Engineering and System Safety, 2019, 183: 323- 340
doi: 10.1016/j.ress.2018.11.015
|
12 |
WEN Z, PEI H, LIU H, et al A sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability[J]. Reliability Engineering and System Safety, 2016, 153: 170- 179
doi: 10.1016/j.ress.2016.05.002
|
13 |
谢雨珩, 李智, 杨明磊, 等 基于自适应采样算法的芳烃异构化代理模型[J]. 化工学报, 2020, 71 (2): 688- 697 XIE Yu-heng, LI Zhi, YANG Ming-lei, et al Surrogate model of aromatic isomerization process based on adaptive sampling algorithm[J]. CIESC Journal, 2020, 71 (2): 688- 697
|
14 |
VAN D, COUCKUYT I, DESCHRIJVER D, et al A fuzzy hybrid sequential design strategy for global surrogate modeling of high-dimensional computer experiments[J]. SIAM Journal on Scientific Computing, 2015, 37 (2): 1020- 1039
doi: 10.1137/140962437
|
15 |
PAN G, YE P, WANG P, et al A sequential optimization sampling method for metamodels with radial basis functions[J]. The Scientific World Journal, 2014, 2014: 192862
|
16 |
SHAHSAVANI D, GRIMVALL A An adaptive design and interpolation technique for extracting highly nonlinear response surfaces from deterministic models[J]. Reliability Engineering and System Safety, 2009, 94 (7): 1173- 1182
doi: 10.1016/j.ress.2008.10.013
|
17 |
DIEZ M, VOLPI S, SERANI A, et al. Simulation-based design optimization by sequential multi-criterion adaptive sampling and dynamic radial basis functions [M]// MINISCI E, VASILE M, PERIAUX J, et al. Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences. [S.l.]: Springer, 2019, 48: 213-228.
|
18 |
SERANI A, PELLEGRINI R, WACKERS J, et al Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels[J]. International Journal of Computational Fluid Dynamics, 2019, 33 (6/7): 237- 255
|
19 |
LI J X, PENG K, WANG W J, et al. Optimization design of rockoons based on improved sequential approximation optimization [C]// Proceeding of the Institution of Mechanical Engineering, Part G: Journal of Aerospace Engineer, 2022, 236(1): 140-153.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|