生物医学工程 |
|
|
|
|
基于异构低秩多模态融合网络的后囊膜混浊预测 |
陈志刚1( ),万永菁1,*( ),王于蓝2,蒋翠玲1,陈霞2 |
1. 华东理工大学 信息科学与工程学院,上海 200237 2. 上海市眼病防治中心,上海 200041 |
|
Prediction of posterior capsular opacification based on heterogeneous low-rank multimodal fusion network |
Zhi-gang CHEN1( ),Yong-jing WAN1,*( ),Yu-lan WANG2,Cui-ling JIANG1,Xia CHEN2 |
1. School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China 2. Shanghai Eye Disease Prevention and Control Center, Shanghai 200041, China |
引用本文:
陈志刚,万永菁,王于蓝,蒋翠玲,陈霞. 基于异构低秩多模态融合网络的后囊膜混浊预测[J]. 浙江大学学报(工学版), 2021, 55(11): 2045-2053.
Zhi-gang CHEN,Yong-jing WAN,Yu-lan WANG,Cui-ling JIANG,Xia CHEN. Prediction of posterior capsular opacification based on heterogeneous low-rank multimodal fusion network. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2045-2053.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.004
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2045
|
1 |
ALLEN D, VASAVADA A Cataract and surgery for cataract[J]. BMJ, 2006, 333 (7559): 128- 132
doi: 10.1136/bmj.333.7559.128
|
2 |
PASCOLINI D, MARIOTTI S P Global estimates of visual impairment: 2010[J]. British Journal of Ophthalmology, 2012, 96 (5): 614- 618
doi: 10.1136/bjophthalmol-2011-300539
|
3 |
VIVEKANAND A, WERGHI N, AL-AHMAD H. Automated image assessment of posterior capsule opacification using Hölder exponents [C]// 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). Abu Dhabi: IEEE, 2013: 538-541.
|
4 |
AWASTHI N, GUO S, WAGNER B J Posterior capsular opacification: a problem reduced but not yet eradicated[J]. Archives of Ophthalmology, 2009, 127 (4): 555- 562
doi: 10.1001/archophthalmol.2009.3
|
5 |
严宏, 陈曦, 陈颖 白内障术后并发症: 现状与对策[J]. 眼科新进展, 2019, 39 (1): 1- 7 YAN Hong, CHEN Xi, CHEN Ying Postoperative complications of cataract: current status and countermeasures[J]. Recent Advances in Ophthalmology, 2019, 39 (1): 1- 7
|
6 |
XU Y, HE J, LIN S, et al General analysis of factors influencing cataract surgery practice in Shanghai residents[J]. BMC Ophthalmology, 2018, 18 (1): 102
doi: 10.1186/s12886-018-0767-5
|
7 |
SZIGIATO A A, SCHLENKER M B, AHMED I I K Population-based analysis of intraocular lens exchange and repositioning[J]. Journal of Cataract and Refractive Surgery, 2017, 43 (6): 754- 760
doi: 10.1016/j.jcrs.2017.03.040
|
8 |
MOHAMMADI S F, SABBAGHI M, HADI Z, et al Using artificial intelligence to predict the risk for posterior capsule opacification after phacoemulsification[J]. Journal of Cataract and Refractive Surgery, 2012, 38 (3): 403- 408
doi: 10.1016/j.jcrs.2011.09.036
|
9 |
章佳. 基于模式识别的小儿白内障红反图像诊断研究及术后并发症预测 [D]. 西安: 西安电子科技大学, 2017. ZHANG Jia. Research on automatic diagnosis of pediatric cataract retro-illumination image and postoperative complications prediction based on pattern recognition [D]. Xi'an: Xidian University, 2017.
|
10 |
WERGHI N, SAMMOUDA R, ALKIRBI F An unsupervised learning approach based on a Hopfield-like network for assessing posterior capsule opacification[J]. Pattern Analysis and Applications, 2010, 13 (4): 383- 396
doi: 10.1007/s10044-010-0181-y
|
11 |
VIVEKANAND A, WERGHI N, AL-AHMAD H Multiscale roughness approach for assessing posterior capsule opacification[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18 (6): 1923- 1931
doi: 10.1109/JBHI.2014.2304965
|
12 |
刘琳. 基于时序红反影像的后发性白内障预测问题研究 [D]. 西安: 西安电子科技大学, 2019. LIU Lin. Research on the prediction of posterior capsular opacification based on time series retro-illumination images [D]. Xi'an: Xidian University, 2019.
|
13 |
KRONSCHLGER M, SIEGL H, PINZ A, et al Automated qualitative and quantitative assessment of posterior capsule opacification by Automated Quantification of After-Cataract II (AQUA II) system[J]. BMC Ophthalmology, 2019, 19 (1): 114
doi: 10.1186/s12886-019-1116-z
|
14 |
JIANG J, LIU X, ZHANG K, et al Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network[J]. Biomedical Engineering Online, 2017, 16 (1): 132
doi: 10.1186/s12938-017-0420-1
|
15 |
BALTRUŠAITIS T, AHUJA C, MORENCY L P Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41 (2): 423- 443
|
16 |
KIROS R, POPURI K, COBZAS D, et al. Stacked multiscale feature learning for domain independent medical image segmentation [C]// International Workshop on Machine Learning in Medical Imaging. Boston: Springer, 2014: 25-32.
|
17 |
GU Y, VYAS K, SHEN M, et al Deep graph-based multimodal feature embedding for endomicroscopy image retrieval[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (2): 481- 492
|
18 |
SIMONOVSKY M, GUTIÉRREZ-BECKER B, MATEUS D, et al. A deep metric for multimodal registration [C]// International Conference on Medical Image Computing and Computer-assisted Intervention. Athens: Springer, 2016: 10-18.
|
19 |
LIU S, LIU S, CAI W, et al Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease[J]. IEEE Transactions on Biomedical Engineering, 2014, 62 (4): 1132- 1140
|
20 |
ZADEH A, CHEN M, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017: 1103-1114.
|
21 |
LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne: ACL, 2018: 2247-2256.
|
22 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
23 |
NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning [C]// International Conference on Machine Learning. Bellevue: ACM, 2011: 689-696.
|
24 |
HOU M, TANG J, ZHANG J, et al Deep multimodal multilinear fusion with high-order polynomial pooling[J]. Advances in Neural Information Processing Systems, 2019, 32: 12136- 12145
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|