机械工程 |
|
|
|
|
欠驱动异构式下肢康复机器人动力学分析及参数优化 |
李伟达(),李娟*(),李想,张虹淼,顾洪,史逸鹏,张浩杰,孙立宁 |
苏州大学 机电工程学院 江苏省先进机器人技术重点实验室,江苏 苏州 215021 |
|
Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot |
Wei-da LI(),Juan LI*(),Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN |
Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electrical Engineering, Suzhou University, Suzhou 215021, China |
引用本文:
李伟达,李娟,李想,张虹淼,顾洪,史逸鹏,张浩杰,孙立宁. 欠驱动异构式下肢康复机器人动力学分析及参数优化[J]. 浙江大学学报(工学版), 2021, 55(2): 222-228.
Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 222-228.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.002
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I2/222
|
1 |
BOUDARHAM J, ROCHE N, PRADON D, et al Variations in kinematics during clinical gait analysis in stroke patients[J]. Plos One, 2013, 8 (6): 1- 9
|
2 |
KAWAMOTO H, KAMIBAYASHI K, NAKATA Y, et al Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients[J]. BMC Neurology, 2013, 13 (1): 141- 148
doi: 10.1186/1471-2377-13-141
|
3 |
穆光宗 我国机构养老发展的困境与对策[J]. 华中师范大学学报人文社会科学版, 2012, 51 (2): 31- 38 MU Guang-zong The difficulties and countermeasures of institutional pension development in China[J]. Journal of Huazhong Normal University: Humanities and Social Sciences, 2012, 51 (2): 31- 38
|
4 |
秦涛, 张立勋 考虑跖趾关节运动的踏板式步行康复机器人运动规划[J]. 机器人, 2014, 36 (3): 330- 336 QIN Tao, ZHANG Li-xun Motion planning of a footpad-type walking rehabilition robot considering motion of metatarsophalangeal joint[J]. Robot, 2014, 36 (3): 330- 336
|
5 |
徐国政, 宋爱国, 高翔 基于混杂理论的机器人辅助康复治疗控制方法[J]. 机器人, 2014, 36 (6): 641- 646 XU Guo-zheng, SONG Ai-guo, GAO Xiang Therapeutic control method for robotic-aided rehabilitation training based on hybrid theory[J]. Robot, 2014, 36 (6): 641- 646
|
6 |
SHIBENDU S R, DILIP K P Kinematics, dynamics and power consumption analyses for turning motion of a six-legged robot[J]. Journal of Intelligent and Robotic Systems, 2014, 74 (3/4): 663- 688
|
7 |
魏小东, 孟青云, 喻洪流, 等 下肢外骨骼机器人研究进展[J]. 中国康复医学杂志, 2019, 34 (4): 491- 495 WEI Xiao-dong, MENG qing-yun, YU Hong-liu, et al Research progress of lower limb exoskeleton robot[J]. Chinese Journal of Rehabilitation Medicine, 2019, 34 (4): 491- 495
doi: 10.3969/j.issn.1001-1242.2019.04.025
|
8 |
KAWAMOTO H. Power assist method for HAL-3 using EMG-based feedback controller [C]// IEEE International Conference on Systems, Man and Cybernetics. Manchester: IEEE, 2003: 1648-1653.
|
9 |
VAN A, EKKELENKAMP R, VENEMAN J F, et al. Selective control of a subtask of walking in arobotic gait trainer (LOPES) [C]// IEEE 10th International Conference on Rehabilitation Robotics. Noordwijk: IEEE, 2007: 841-848.
|
10 |
范伯骞. 液压驱动下肢外骨骼机器人关键技术研究[D]. 杭州: 浙江大学, 2017. FAN Bo-qian. Research on the key technologies of the hydraulic lower limb exoskeleton robot [D]. Hangzhou: Zhejiang University, 2017.
|
11 |
麻天照. 下肢外骨骼康复机器人控制系统设计与研究[D]. 成都: 电子科技大学, 2015. MA Tian-zhao. Research and design on control system of an lower limb rehabilitation robot [D]. Chendu: University of Electronic Science and Technology of China, 2015.
|
12 |
GUO B J, HAN J H, LI X P, et al A wearable somatosensory teaching device with adjustable operating force for gait rehabilitation training robot[J]. Advances in Mechanical Engineering, 2017, 9 (10): 1- 14
|
13 |
LIU F Y, LU C Y, HE L Design and motion analysis of lower limbs in modular nursing bed[J]. Journal of Engineering Design, 2014, 21 (6): 583- 588
|
14 |
汪步云, 王月朋, 梁艺, 等 下肢外骨骼助力机器人关节驱动设计及试验分析[J]. 机械工程学报, 2019, 55 (23): 55- 66 WANG Bu-yun, WANG Yue-peng, LIANG Yi, et al Design on articular motion and servo driving with experimental analysis for lower limb exoskeleton robot[J]. Journal of Mechanical Engineering, 2019, 55 (23): 55- 66
|
15 |
LI W D, ZHANG H J, LI J, et al. An evaluation method of wearing comfort for exoskeleton robots [C]// IEEE International Conference on Robotics and Biomimetics. Kuala Lumpur: IEEE, 2018: 2439-2443.
|
16 |
LI W D, LI J, LI X, et al. Development of a parameter adaptation robot for lower limb rehabilitation [C]// IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics. Bangkok: IEEE, 2019: 7-11.
|
17 |
ZHU Q H, CHEN Z L, LI W D, et al. Structure design and analysis of compliant human-machine interface mechanism for exoskeletons [C]// IEEE International Conference on Advanced Robotics and its Social Impacts. Austin: IEEE, 2017.
|
18 |
PENG L, HOU Z G, WANG W Q. Dynamic modeling and control of a parallel upper-limb rehabilitation robot [C]// IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. Piscataway: IEEE, 2015: 532-537.
|
19 |
史小华, 王洪波, 孙利, 等 外骨骼型下肢康复机器人结构设计与动力学分析[J]. 机械工程学报, 2014, 50 (3): 41- 48 SHI Xiao-hua, WANG Hong-bo, SUN Li, et al Design and dynamic analysis of an exoskeletal lower limbs rehabilitation robot[J]. Journal of Mechanical Engineering, 2014, 50 (3): 41- 48
doi: 10.3901/JME.2014.03.041
|
20 |
张浩杰. 一种误差自适应的欠驱动康复训练机器人的研究[D]. 苏州: 苏州大学. 2019. ZHANG Hao-jie. Research on an error adaptive under-actuated rehabilitation training robot [D]. Suzhou: Soochow University, 2019.
|
21 |
SCHMIDT H, HESSE S, BERNHARD R, et al HapticWalker: a novel haptic foot device[J]. ACM Transactions on Applied Perception, 2005, 2 (2): 166- 180
doi: 10.1145/1060581.1060589
|
22 |
MARIANNE S, CARMEN K, FRIEDEMANN M, et al Comparison of orthostatic reactions of patients still unconscious within the first three months of brain injury on a tilt table with and without integrated stepping[J]. Clinical Rehabilitation, 2008, 22: 1034- 1041
doi: 10.1177/0269215508092821
|
23 |
HIDLER J, WISMAN W, NECKEL N Kinematic trajectories while walking within the lokomat robotic gait-orthosis[J]. Clinical Biomechanics, 2008, 23 (10): 1251- 1259
doi: 10.1016/j.clinbiomech.2008.08.004
|
24 |
张浩杰, 李伟达, 李娟, 等 一种个体自适应康复训练机器人机构的研究[J]. 机械与电子, 2019, 37 (3): 72- 75 ZHANG Hao-jie, LI Wei-da, LI Juan, et al Research on an individual adaptive rehabilitation training robot mechanism[J]. Machinery and Electronics, 2019, 37 (3): 72- 75
doi: 10.3969/j.issn.1001-2257.2019.03.017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|