Please wait a minute...
J4  2012, Vol. 46 Issue (6): 1067-1073    DOI: 10.3785/j.issn.1008-973X.2012.06.017
机械工程     
微/纳米定位平台的桥式机构静、动态优化设计
林超, 俞松松, 陶桂宝, 程凯, 陶友淘, 宿新红
重庆大学 机械传动国家重点实验室, 重庆 400030
Static and dynamic optimal design of bridge-type mechanism of
micro/nano-positioning platform
LIN Chao, YU Song-song, TAO Gui-bao, CHENG Kai, TAO You-tao, SU Xin-hong
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
 全文: PDF  HTML
摘要:

为了解决桥式机构静态性能与动态性能相互制约问题,应用伪刚体模型法,建立桥式机构的静、动力学模型,分析表明:柔性板簧厚度越小、长度越长,桥式机构的静态性能越好,但动态性能就越差;动态性能主要受柔性板簧厚度影响,板簧长度对其影响不大.为了优化桥式机构的静、动态性能,建立该机构总性能的优化模型,并对柔性板簧厚度、长度等几何特征参数进行了优化设计.应用ANSYS,对优化前、后的机构进行了仿真分析,并对机构的静、动态性能进行了试验,结果表明:优化后机构的稳态时间减小为0.032 s,比优化前ANSYS仿真缩短了80%,微位移输出减小了40.2%,优化后机构总性能达340.75 mm·Hz,比优化前ANSYS仿真提高了74.53%.

Abstract:

In order to solve the restriction between static and dynamic performances, static and dynamic models were set up by using pseudo-rigid-body and the effect of geometric parameters on the static and dynamic performances was analyzed. As a result, the smaller the thickness and the longer the length of flexure hinge are, the better the static performance of the bridge-type mechanism will be, while the dynamic performance goes worse. The dynamic performance is mainly affected by the thickness of flexure hinge, while much less by the length. An optimization model of overall performance of bridge-type mechanism was established, and the thickness, length and other geometric parameters were optimized. In terms of ANSYS, the performances of the mechanism before and after optimization were simulated, and its static and dynamic performances were tested. Experimental results indicated that the stable time after optimization was decreased to 0.032 s, 80% shorter than before optimization, the displacement output decreased by 40.2%, while the overall performance increased to 340.75 mm·Hz, increased by 74.53% than before optimization.

出版日期: 2012-07-24
:  TH 139  
基金资助:

重庆大学机械传动国家重点实验室自主资助项目(0301002109150);重庆大学机械传动国家重点实验室2008年度开放基金资助项目(SKLMT-KFKT-200806).

作者简介: 林超(1958—),男,教授.主要从事新型齿轮传动、精密机械与传动等科研工作.E-mail: linchao@cqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林超, 俞松松, 陶桂宝, 程凯, 陶友淘, 宿新红. 微/纳米定位平台的桥式机构静、动态优化设计[J]. J4, 2012, 46(6): 1067-1073.

LIN Chao, YU Song-song, TAO Gui-bao, CHENG Kai, TAO You-tao, SU Xin-hong. Static and dynamic optimal design of bridge-type mechanism of
micro/nano-positioning platform. J4, 2012, 46(6): 1067-1073.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.06.017        http://www.zjujournals.com/eng/CN/Y2012/V46/I6/1067

[1] WANG H, ZHANG X M. Input coupling analysis and optimal design of a 3DOF compliant micropositioning stage[J]. Mechanism and Machine Theory, 2008, 43(4): 400-410.
[2] GAO P, SWEI S, YUAN Z. New piezoelectric precision micropositioning stage utilizing flexure hinges[J]. Nanotechnology, 1999, 10 (4): 394-398.
[3] TANG X Y, CHEN I M, LI Q, et al. Design and nonlinear modeling of a largedisplacement XYZ flexure parallel mechanism with decoupled kinematic structure[J]. Scientific Instruments, 2006, 77 (11): 1-11.
[4] DONG W, SUN L N, DU Z J, et al. Stiffness research on a highprecision, largeworkspace parallel mechanism with compliant joints[J]. Precision Engineering, 2008, 32(3): 222-231.
[5] DONG J Y, YAO Q, PLACID M F, et al. Dynamics,control and performance analysis of a novel parallelkinematics mechanism for integrated,multiaxis nanopositioning[J]. Precision Engineering. 2008,32: 20-33.
[6] 魏强,张玉林,宋会英,等.扫描隧道显微镜精密工作台及其控制技术研究[J].中国机械工程, 2007,18(2): 193-196.
WEI Qiang, ZHANG Yulin, SONG Huiying, et al. Research on precision stage and control technology of scanning tunnel ing microscope[J]. China Mechanical Engineering, 2007,18(2): 193-196.
[7] 马立,荣伟彬,孙立宁,等.面向光学精密装配的微操作机器人[J],机械工程学报,2009, 45(2): 280-287.
MA Li, RONG Weibin, SUN Lining, et al. Micro operation robot for optical precise assembly [J]. Journal of Mechanical Engineering,2009, 45(2): 280-287.
[8] YU Y Q, HOWELL L L, LUSK C P, et al. Dynamic modeling of compliant mechanisms based on the pseudorigidbody model[J]. Journal of Mechanical Design, 2005, 127(4): 760-765.
[9] KE Y, GUO T, LI J. A newstyle, slottedcymbal transducer with large displacement and high energy transmission [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004, 51: 1171-1177.

[10] MA H W, YAO S M, WAMG L Q, et al. Analysis of the displacement amplification ratio of bridge type flexure hinge[J]. Sensors and Actuators, 2006, A 132: 730-736.
[11] KIM J H, KIM S H, KWAK Y K, et al. Development and optimization of 3D bridgetype hinge mechanisms [J]. Sensors and Actuators, 2004, A 116: 530-538.
[12] KIM D M, KANG D W, SHIM J Y, et al. Optimal design of a flexure hingebased XYZ atomic force microscopy scanner for minimizing Abbe errors[J]. Review of Scientific Instruments, 2005, 76: 073706.
[13] 于靖军,周强,毕树生,等.基于动力学性能的全柔性机构优化设计[J].机械工程学报,2003, 39(8): 32-36.
YU Jingjun, ZHOU Qiang, BI Shusheng, et al. Optimal design od a fully compliant mechanism based on its dynamic characteristics [J]. China Journal of Mechanical Engineering, 2003, 39(8): 32-36.
[14] 林超,俞松松,程凯,等.大行程5DOF微纳传动平台的设计及特性分析[J].中国机械工程,2010,21(22): 2679-2684.
LIN Chao, YU Songsong, CHENG Kai, et al. Design and analysis of a longdisplacement5DOF nanotransmission platform[J]. China Mechanical Engineering, 2010, 21(22): 2679-2684.
[15] HOWELL L L.柔性机构学[M].北京:高等教育出版社,2007: 98-149.

[1] 林超, 陶友淘, 程凯, 俞松松, 刘垒. 微/纳传动平台的位移耦合分析[J]. J4, 2013, 47(4): 720-727.
[2] 林超, 俞松松, 程凯, 崔新辉, 陶友淘, 王静超. 微/纳米定位平台的动态特性分析与试验[J]. J4, 2012, 46(8): 1375-1381.