计算机技术 |
|
|
|
|
基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测 |
尹向雷( ),屈少鹏,解永芳,苏妮 |
陕西理工大学 电气工程学院,陕西 汉中 723000 |
|
Occluded bird nest detection based on asymptotic feature fusion and multi-scale dilated attention |
Xianglei YIN( ),Shaopeng QU,Yongfang XIE,Ni SU |
College of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723000, China |
引用本文:
尹向雷,屈少鹏,解永芳,苏妮. 基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测[J]. 浙江大学学报(工学版), 2025, 59(3): 535-545.
Xianglei YIN,Shaopeng QU,Yongfang XIE,Ni SU. Occluded bird nest detection based on asymptotic feature fusion and multi-scale dilated attention. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 535-545.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I3/535
|
1 |
陈杰, 朱仕焜, 孙嫱, 等 面向无人机前端轻量级应用的输电线路鸟巢智能检测[J]. 福州大学学报: 自然科学版, 2023, 51 (4): 539- 546 CHEN Jie, ZHU Shikun, SUN Qiang, et al Bird’s nest intelligent detection on transmission lines for unmanned aerial vehicle front-end lightweight application[J]. Journal of Fuzhou University: Natural Science Edition, 2023, 51 (4): 539- 546
|
2 |
WEN X, WU Q, WANG Y, et al High-risk region of bird streamer flashover in 110 kV composite insulators and design for bird-preventing shield[J]. International Journal of Electrical Power and Energy Systems, 2021, 131: 107010
doi: 10.1016/j.ijepes.2021.107010
|
3 |
裴少通, 张行远, 胡晨龙, 等 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39 (9): 2825- 2840 PEI Shaotong, ZHANG Hangyuan, HU Chenlong, et al The defect detection method for cross-environment power transmission line based on the ER-YOLO algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39 (9): 2825- 2840
|
4 |
何冠锋. 基于深度学习的输电线路鸟巢检测研究[D]. 东莞: 东莞理工学院, 2023. HE Guanfeng. Research on bird nest detection of transmission lines based on deep learning [D]. Dongguan: Dongguan University of Technology, 2023.
|
5 |
徐晶, 韩军, 童志刚, 等 一种无人机图像的铁塔上鸟巢检测方法[J]. 计算机工程与应用, 2017, 53 (6): 231- 235 XU Jing, HAN Jun, TONG Zhigang, et al Method for detecting bird’s nest on tower based on UAV image[J]. Computer Engineering and Applications, 2017, 53 (6): 231- 235
|
6 |
LU J, XU X, LI X, et al Detection of bird’s nest in high power lines in the vicinity of remote campus based on combination features and cascade classifier[J]. IEEE Access, 2018, 6: 39063- 39071
doi: 10.1109/ACCESS.2018.2851588
|
7 |
李浩然, 高健, 吴田, 等 基于改进Canny算子的绝缘子裂纹检测研究[J]. 智慧电力, 2021, 49 (2): 91- 98 LI Haoran, GAO Jian, WU Tian, et al Crack detection method of insulators based on improved canny operator[J]. Smart Power, 2021, 49 (2): 91- 98
|
8 |
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (7553): 436- 444
|
9 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779–788.
|
10 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector [C]// European Conference on Computer Vision . [s.l.]: Springer, 2016: 21–37.
|
11 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2999–3007.
|
12 |
GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Santiago: IEEE, 2015, 7: 1440–1448.
|
13 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
14 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2980–2988.
|
15 |
魏业文, 李梅, 解园琳, 等 基于改进Faster-RCNN的输电线路巡检图像检测[J]. 电力工程技术, 2022, 41 (2): 171- 178 WEI Yewen, LI Mei, XIE Yuanlin, et al Transmission line inspection image detection based on improved Faster-RCNN[J]. Electric Power Engineering Technology, 2022, 41 (2): 171- 178
|
16 |
王纪武, 罗海保, 鱼鹏飞, 等 基于Faster R-CNN的多尺度高压塔鸟巢检测[J]. 北京交通大学学报, 2019, 43 (5): 37- 43 WANG Jiwu, LUO Haibao, YU Pengfei, et al Bird’s nest detection in multi-scale of high-voltage tower based on Faster R-CNN[J]. Journal of Beijing Jiaotong University, 2019, 43 (5): 37- 43
|
17 |
杨学存, 和沛栋, 陈丽媛, 等 基于深度可分离卷积的轻量级YOLOv3输电线路鸟巢检测方法[J]. 智慧电力, 2021, 49 (12): 88- 95 YANG Xuecun, HE Peidong, CHEN Liyuan, et al Bird’s nest detection on lightweight YOLOv3 transmission line based on deep separable convolution[J]. Smart Power, 2021, 49 (12): 88- 95
|
18 |
赵霖, 王素珍, 邵明伟, 等 基于改进YOLOv5的输电线路鸟巢缺陷检测方法[J]. 电子测量技术, 2023, 46 (3): 157- 165 ZHAO Lin, WANG Suzhen, SHAO Mingwe, et al Improved YOLOv5-based bird’s nest defect detection method for transmission lines[J]. Electronic Measurement Technology, 2023, 46 (3): 157- 165
|
19 |
王杨杨, 曹晖, 莫文昊 基于深度学习的改进型YOLOv4输电线路鸟巢检测与识别[J]. 智慧电力, 2023, 51 (1): 101- 107 WANG Yangyang, CAO Hui, MO Wenhao Bird’s nest det1ection and identification on improved YOLOv4 transmission line based on deep learning[J]. Smart Power, 2023, 51 (1): 101- 107
|
20 |
ZHANG Z, HE G Recognition of bird nests on power transmission lines in aerial images based on improved YOLOv4[J]. Frontiers in Energy Research, 2022, 10: 870253
doi: 10.3389/fenrg.2022.870253
|
21 |
HAN G, LI T, LI Q, et al Improved algorithm for insulator and its defect detection based on YOLOX[J]. Sensors, 2022, 22 (16): 6186
doi: 10.3390/s22166186
|
22 |
肖粲俊, 潘睿志, 李超, 等 基于改进YOLOv5s绝缘子缺陷检测技术研究[J]. 电子测量技术, 2022, 45 (24): 137- 144 XIAO Canjun, PAN Ruizhi, LI Chao, et al Research on defect detection technology based on improved YOLOv5s insulator[J]. Electronic Measurement Technology, 2022, 45 (24): 137- 144
|
23 |
张焕龙, 齐企业, 张杰, 等 基于改进YOLOv5的输电线路鸟巢检测方法研究[J]. 电力系统保护与控制, 2023, 51 (2): 151- 159 ZHANG Huanlong, QI Qiye, ZHANG Jie, et al Bird nest detection method for transmission lines based on improved YOLOv5[J]. Power System Protection and Control, 2023, 51 (2): 151- 159
|
24 |
郝琨, 王阔, 王贝贝 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报: 工学版, 2022, (8): 1622- 1632 HAO Kun, WANG Kuo, WANG Beibei Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of Zhejiang University: Engineering Science, 2022, (8): 1622- 1632
|
25 |
袁天乐, 袁巨龙, 朱勇建, 等 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2022, (12): 2349- 2357 YUAN Tianle, YUAN Julong, ZHU Yongjian, et al Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2022, (12): 2349- 2357
|
26 |
LI J, YAN D, LUAN K, et al Deep learning-based bird’s nest detection on transmission lines using UAV imagery[J]. Applied Sciences, 2020, 10 (18): 6147
doi: 10.3390/app10186147
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|