Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 606-615    DOI: 10.3785/j.issn.1008-973X.2025.03.018
机械工程     
基于PCA和自联想神经网络的核环境冷挤压切割刀具状态监测
袁沛1,2(),蒋君侠1,*(),马飞2,金杰峰2,来建良2
1. 浙江大学 机械工程学院,浙江 杭州 310058
2. 杭州景业智能科技股份有限公司, 浙江 杭州 310051
Monitoring for cold extrusion cutting tools in nuclear environment based on PCA and auto associative neural network
Pei YUAN1,2(),Junxia JIANG1,*(),Fei MA2,Jiefeng JIN2,Jianliang LAI2
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
2. Hangzhou Jingye Intelligent Technology Co. Ltd, Hangzhou 310051, China
 全文: PDF(3008 KB)   HTML
摘要:

在高放射性环境中,传感器部署受限,传动链噪声干扰,冷挤压切割刀具一致性差. 为此提出基于外置电机旋转轴与进给轴电机扭矩信号的时频域统计、主成分分析(PCA)与自联想神经网络(AANN)相结合的刀具状态监测模型. 基于旋转电机及进给电机扭矩波形提取时域统计特征及小波包能量特征形成原始训练集,利用原始训练集初步训练AANN模型,使用PCA重构原始训练集用于优化AANN模型局部结构参数,形成PCA-AANN刀具状态监测模型. 基于实际样机的切割试验采集扭矩数据,对提出的PCA-AANN和现有AANN模型进行分析对比,结果表明PCA的引入有助于提高AANN模型鲁棒性,能有效降低刀具工作状态误报率,实现放射性环境下刀具状态的准确监测. 所提方法为放射性环境中类似长传动链设备的状态监测提供了借鉴.

关键词: 放射性刀具状态监测时域统计小波包分解主成分分析自联想神经网络    
Abstract:

A tool condition monitoring model combined with time-frequency domain statistics, principal component analysis (PCA) and auto associative neural network (AANN) was proposed based on motor torque signals of external motor rotation shaft and feed shaft, aiming at problems such as limited deployment of sensors in high radiation environment, noise interference of transmission chain and poor consistency of cold extrusion cutting tools. Firstly, time domain statistical features and wavelet packet energy features were extracted to form the original training set based on the torque waveform of rotary motor and feed motor. Then, the original training set was used to train the AANN model. Finally, the PCA was used to reconstruct the original training set to optimize the local structural parameters of the AANN model, and a PCA-AANN tool condition monitoring model was formed. The proposed PCA-AANN model was compared with the existing AANN model based on the torque data collected from the cutting test of the actual prototype, and experimental results showed that the introduction of PCA improved the robustness of AANN model, reduced the false alarm rate of tool operating state, and realized the accurate monitoring of tool status under radioactive environment. The proposed method provided a reference for the condition monitoring of similar transmission equipment under radioactive environment.

Key words: radioactivity    tool condition monitoring    time domain statistics    wavelet packet decomposition    principal component analysis    auto associative neural network
收稿日期: 2024-03-18 出版日期: 2025-03-10
CLC:  TH 164  
基金资助: “尖兵领雁+X”研发攻关计划资助项目(2024C04056(CSJ)).
通讯作者: 蒋君侠     E-mail: yuanp@boomy.cn;junxia.jiang@126.com
作者简介: 袁沛(1988—),男,博士,从事核工业后处理研究. orcid.org/0009-0003-0674-3972. E-mail:yuanp@boomy.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
袁沛
蒋君侠
马飞
金杰峰
来建良

引用本文:

袁沛,蒋君侠,马飞,金杰峰,来建良. 基于PCA和自联想神经网络的核环境冷挤压切割刀具状态监测[J]. 浙江大学学报(工学版), 2025, 59(3): 606-615.

Pei YUAN,Junxia JIANG,Fei MA,Jiefeng JIN,Jianliang LAI. Monitoring for cold extrusion cutting tools in nuclear environment based on PCA and auto associative neural network. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 606-615.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.018        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/606

图 1  放射性厚壁管材切割设备系统组成
图 2  刀具组件运动与受力分析
图 3  刀具圆角半径为0.5 mm时的冷挤压切割受力分析
图 4  刀具圆角为1.0 mm时的冷挤压切割受力分析
图 5  挤压切割力分解
图 6  刀具状态监测流程图
图 7  放射性厚壁管材切割设备数采方案
图 8  一次完整切割过程的电机扭矩
图 9  扭矩时域特征曲线
图 10  扭矩数据时频域统计特征
图 11  刀具全寿期切割健康因子曲线
图 12  刀具切割过程刃口状态
图 13  第2把刀具全寿期切割健康因子曲线
图 14  第3把刀具全寿期切割健康因子曲线
1 杜洪铭, 靳松, 刘天险, 等 放射性固体废物压缩减容技术研究[J]. 原子能科学技术, 2015, 49 (8): 1515- 1520
DU Hongming, JIN Song, LIU Tianxian, et al Study on compaction of radioactive solid waste[J]. Atomic Energy Science and Technology, 2015, 49 (8): 1515- 1520
2 张存平, 吕海雷, 蒋磊, 等 放射性固体废物回取与整备处理示范设施[J]. 中国原子能科学研究院年报, 2011, (1): 66- 66
ZHANG Cunping, LV Hailei, JIANG Lei, et al Demonstration facility for recycling and reconditioning of radioactive solid waste[J]. Annual Report of China Institute of Atomic Energy, 2011, (1): 66- 66
3 黄来喜, 何文新, 陈德淦 大亚湾核电站放射性固体废物管理[J]. 辐射防护, 2004, 24 (3): 211- 226
HUANG Laixi, HE Wenxin, CHEN Degan Management of radioactive solid waste in Daya bay nuclear power plant[J]. Radiation Protection, 2004, 24 (3): 211- 226
4 程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904
CHENG Xun, YU Jianbo Machining tool wear monitoring method based on machine vision[J]. Journal of Zhejiang University: Engineering and Technology, 2021, 55 (5): 896- 904
5 田颖, 王文豪 一种基于主轴功率的刀具状态监测方法[J]. 天津大学学报, 2021, 54 (11): 1179- 1186
TIAN Ying, WANG Wenhao A tool condition monitoring method based on spindle power[J]. Journal of Tianjin University, 2021, 54 (11): 1179- 1186
6 黄颖旭, 李波, 田锡天 基于主轴电流的铣削力间接监测方法[J]. 计算机集成制造系统, 2022, 28 (1): 93- 101
HUANG Yingxu, LI Bo, TIAN Xitian Indirect monitoring method of milling force based on spindle current[J]. Computer Integrated Manufacturing Systems, 2022, 28 (1): 93- 101
7 ZHOU C G, YANG B, GUO K, et al Vibration singularity analysis for milling tool condition monitoring[J]. International Journal of Mechanical Sciences, 2020, 166: 105254
doi: 10.1016/j.ijmecsci.2019.105254
8 周兆锋, 洪捐, 黄传锦 基于声发射信号分析的刀具磨损状态在线监测研究[J]. 工具技术, 2022, 56 (12): 51- 55
ZHOU Zhaofeng, HONG Qian, HUANG Chuanjin Research on on-line monitoring of tool wear state based on acoustic emission signal analysis[J]. Tool Technology, 2022, 56 (12): 51- 55
9 聂鹏, 马尧, 郭勇翼, 等 基于IPSO优化LS-SVM的铣削刀具磨损状态监测方法研究[J]. 振动与冲击, 2022, 41 (22): 137- 143
NIE Peng, MA Yao, GUO Yongyi, et al Research on abrasion monitoring method of milling tool based on IPSO optimization LS-SVM[J]. Journal of Vibration and Shock, 2022, 41 (22): 137- 143
10 朱锟鹏, 李刚 基于刀具磨损映射关系的微细铣削力理论建模与试验研究[J]. 机械工程学报, 2021, 57 (19): 246- 259
ZHU Kunpeng, LI Gang Theoretical modeling and experimental study of micro-milling force based on tool wear mapping[J]. Journal of Mechanical Engineering, 2021, 57 (19): 246- 259
doi: 10.3901/JME.2021.19.023
11 HE Z P, SHI T L, XUAN J P , et al. Research on tool wear prediction based on temperature signals and deep learning [J]. Wear , 2021, 478: 203902.
12 王国锋, 李启铭, 秦旭达, 等 支持向量机在刀具磨损多状态监测中的应用[J]. 天津大学学报, 2011, 44 (1): 35- 39
WANG Guofeng, LI Qiming, QIN Xuda, et al Application of support vector machine in multi-state monitoring of tool wear[J]. Journal of Tianjin University, 2011, 44 (1): 35- 39
13 侍相龙, 张屹, 彭明松, 等 基于LDA和支持向量机的微铣刀磨损状态识别研究[J]. 制造业自动化, 2023, 45 (2): 179- 183
SHI Xianglong, ZHANG Yi, PENG Mingsong, et al Research on wear state identification of micro-milling cutter based on LDA and support vector machine[J]. Manufacturing Automation, 2023, 45 (2): 179- 183
doi: 10.3969/j.issn.1009-0134.2023.02.036
14 GOMES M C, BRITO L C, DA SILVA M, et al. Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors [J]. Precision Engineering , 2021, 67: 137–151.
15 杨国葳, 李宏坤, 张明亮, 等 基于一维深度卷积自动编码器的刀具状态监测方法[J]. 振动与冲击, 2021, 40 (21): 223- 233
YANG Guowei, LI Hongkun, ZHANG Mingliang, et al Tool state monitoring method based on one-dimensional deep convolutional autoencoder[J]. Journal of Vibration and Shock, 2021, 40 (21): 223- 233
16 MAREI M, ZAATARI S E, LI W Transfer learning enabled convolutional neural networks for estimating health state of cutting tools[J]. Robotics and Computer-integrated Manufacturing, 2021, 71: 102145
doi: 10.1016/j.rcim.2021.102145
17 汪海晋, 尹宗宇, 柯臻铮, 等 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报: 工学版, 2020, 54 (5): 931- 939
WANG Haijin, YIN Zongyu, KE Zhenzheng, et al Spiral milling tool wear monitoring based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering and Technology, 2020, 54 (5): 931- 939
18 ALIUSTAOGLU C, ERTUNC H M, OCAK H Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system[J]. Mechanical Systems and Signal Processing, 2009, 23 (2): 539- 546
doi: 10.1016/j.ymssp.2008.02.010
19 刘学为, 蔡旭林 基于模糊小波极限学习机的刀具磨损状态识别[J]. 机械制造与自动化, 2021, 50 (5): 12- 15
LIU Xuewei, CAI Xulin Tool wear state recognition based on fuzzy wavelet extreme learning machine[J]. Machine Building and Automation, 2021, 50 (5): 12- 15
20 OKOKPUJIE I P, SINEBE J E An overview of the study of ANN-GA, ANN-PSO, ANFIS-GA, ANFIS-PSO and ANFISFCM predictions analysis on tool wear during machining process[J]. Journal Européen des Systèmes Automatisés, 2023, 56 (2): 269- 280
21 张鹏宇, 孟鑫鑫, 林有希 铝合金切削过程刀具磨损预测研究[J]. 机床与液压, 2022, (17): 189- 194
ZHANG Pengyu, MENG Xinxin, LIN Youxi Research on tool wear prediction in aluminum alloy cutting process[J]. Machine Tool and Hydraulics, 2022, (17): 189- 194
22 ZHANG X Y, LIU L L, WAN X, et al Tool wear online monitoring method based on DT and SSAE-PHMM[J]. Journal of Computing and Information Science in Engineering, 2021, 21 (3): 1- 18
23 YAN S C, SUI L, WANG S Q, et al On-line tool wear monitoring under variable milling conditions based on a condition-adaptive hidden semi-Markov model (CAHSMM)[J]. Mechanical Systems and Signal Processing, 2023, 200: 110644
doi: 10.1016/j.ymssp.2023.110644
24 JACOBS K. Independent identically distributed (IID) random variables [M]. Berlin: Springer, 1992.
[1] 张晨,汪立新,孔祥玉. 基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1336-1345.
[2] 曾海英,叶沛楠,金华辉,刘京雨,岑夺丰. 基于机器学习算法的块石形状分类及土石混合体数值模拟[J]. 浙江大学学报(工学版), 2024, 58(10): 2119-2127.
[3] 金丁灿,蒋君侠,来建良,金杰峰,吴德慧,沈琛林,宋文博. 后处理全齿轮传动机械臂的设计[J]. 浙江大学学报(工学版), 2022, 56(5): 864-872.
[4] 童林,官铮,王立威,杨文韬,姚洋. 基于时序分解与误差修正的新能源爬坡事件预测[J]. 浙江大学学报(工学版), 2022, 56(2): 338-346.
[5] 李研彪,郑航,徐梦茹,罗怡沁,孙鹏. 5-PSS/UPU并联机构的多目标性能参数优化[J]. 浙江大学学报(工学版), 2019, 53(4): 654-663.
[6] 孙颖,胡艳香,张雪英,段淑斐. 面向情感语音识别的情感维度PAD预测[J]. 浙江大学学报(工学版), 2019, 53(10): 2041-2048.
[7] 吴平, 陈亮, 周伟, 郭玲玲. 基于主成分分析和噪声估计的在线子空间辨识[J]. 浙江大学学报(工学版), 2018, 52(9): 1694-1701.
[8] 刘大龙, 冯冬芹. 采用多尺度主成分分析的控制系统欺骗攻击检测[J]. 浙江大学学报(工学版), 2018, 52(9): 1738-1746.
[9] 孟濬, 邓晓雨, 虞捷舟. 基于变量聚类的BP神经网络术后生存期预测模型[J]. 浙江大学学报(工学版), 2018, 52(12): 2365-2371.
[10] 刘磊,杨鹏,刘作军. 基于多源信息和粒子群优化算法的下肢运动模式识别[J]. 浙江大学学报(工学版), 2015, 49(3): 439-447.
[11] 徐锋,纪杨建,顾新建,祁国宁. 基于主成分分析的产品低碳包装概念设计方法[J]. 浙江大学学报(工学版), 2014, 48(11): 2009-2016.
[12] 丁宽,仲兆平,张波,刘志超. 纯化凹凸棒土催化废轮胎热解制取高值液态产物[J]. 浙江大学学报(工学版), 2014, 48(11): 2053-2060.
[13] 李懿, 陆光明, 金帅, 罗建勋, 陈卫东, 郑筱祥. 手部精细运动获取缺损数据修复方法[J]. J4, 2013, 47(6): 925-933.
[14] 鲍必赛, 伍健荣, 楼晓俊, 刘海涛. 基于二维特征矩阵的特征融合算法[J]. J4, 2012, 46(11): 2081-2088.
[15] 王静,封洲燕,郑晓静. 低信噪比神经元锋电位检测的新方法[J]. J4, 2011, 45(5): 941-947.