Please wait a minute...
J4  2013, Vol. 47 Issue (6): 925-933    DOI: 10.3785/j.issn.1008-973X.2013.06.001
计算机技术     
手部精细运动获取缺损数据修复方法
李懿1, 陆光明1,2, 金帅1,2, 罗建勋1,2, 陈卫东1, 郑筱祥1
1. 浙江大学 求是高等研究院,浙江 杭州 310027;2. 浙江大学 计算机科学与技术学院,浙江 杭州 310027
Method of missing data recovery
for acquiring accurate hand movements
LI Yi1, LU Guang-ming1,2, JIN Shuai1,2, LUO Jian-xun1,2,CHEN Wei-dong1, ZHENG Xiao-xiang1
1. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China; 2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

在利用光学运动捕捉技术获取手部精细运动数据及手势信息的过程中,捕捉运动数据的缺失会对神经解码的性能产生影响,为此,提出一种基于主成分分析的缺失运动数据恢复和重建方法.该方法采用期望最大化算法在主成分空间和原始数据空间进行迭代映射,求解对应主成分空间,以提高原始空间数据修复的精度.实验分别从缺损数据长度、缺损数据维度、周期性运动数据及冗余数据等方面对该算法进行了验证,并与三次样条插值和一次迭代插值的结果进行了比较.对测试数据的实验结果表明:该方法适用于连续缺损数据长度小于350帧,或同时缺损数据维度小于13维的情况.手部运动的周期性规律对于提高数据恢复的精度有很大的帮助,冗余标记点也能在一定程度上减少数据恢复的结果误差.与三次样条插值和一次迭代插值方法相比,该方法的平均误差均小于10 mm,仅相当于前两种方法误差的50%,甚至更少.

Abstract:

Using optical motion capture system for acquiring accurate hand movements data and gesture information can be effective for neural decoding and related applications. However, data missing often occurs and affects the accuracy and efficiency of neural decoding results. A method based on principal component analysis was proposed for missing data recovery and rebuild. This method takes benefit of expectation maximization (EM)-like algorithm to increase the accuracy of recovery data results by mapping between original data space and principal component space iteratively for principal component space construction and refinement. To evaluate this method, four different experiments were involved, namely, missing frame length, missing dimension number, cyclic feature and redundant data. Recovered data results were compared with those of the cubic spline interpolation and one iteration interpolation methods. The experimental results show that, this method is applicable to missing frame length less than 350, missing dimension number smaller than 13. The cyclic feature of hand movements contributes to the increased accuracy of recovered data, and the redundant data is also helpful in reducing recovery data errors. When comparing the data results with those of the cubic interpolation and one iteration interpolation methods, the average error of this method was less than 10 mm, only 50% or less of the other two.

出版日期: 2013-11-22
:  TP 399  
通讯作者: 通信联系人:郑筱祥,女,教授.     E-mail: zxx@bme.zju.edu.cn
作者简介: 李懿(1981—),女,博士后,从事虚拟现实、计算机人机交互技术研究.E-mail:liyi9810857@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李懿, 陆光明, 金帅, 罗建勋, 陈卫东, 郑筱祥. 手部精细运动获取缺损数据修复方法[J]. J4, 2013, 47(6): 925-933.

LI Yi, LU Guang-ming, JIN Shuai, LUO Jian-xun,CHEN Wei-dong, ZHENG Xi. Method of missing data recovery
for acquiring accurate hand movements. J4, 2013, 47(6): 925-933.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.06.001        http://www.zjujournals.com/eng/CN/Y2013/V47/I6/925

[1] VELLISTE M, PEREL S, SPALDING M C, et al. Cortical control of a prosthetic arm for self-feeding[J]. Nature, 2008, 453(7198): 1098-1101.

[2] HOCHBERG L R, BACHER D, JAROSIEWICZ B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[J]. Nature, 2012, 485(7398): 372-375.

[3] LU Guang-ming, LI Yi, JIN Shuai, et al. A real-time motion capture framework for synchronized neural decoding[C]∥ Proceedings of ISVRI 2011. Singapore: IEEE, 2011: 305-310.

[4] LIU G, MCMILLAN L. Estimation of missing markers in human motion capture[J]. The Visual Computer, 2006, 22(9): 721-728.

[5] HERDA L, FUA P, NKERS R P, et al. Skeleton-based motion capture for robust reconstruction of human motion[C]∥ Proceedings of Computer Animation 2000. USA: IEEE, 2000: 77-83.

[6] KIRK A G, O’BRIEN J F, FORSYTH D A. Skeletal parameter estimation from optical motion capture data[C]∥ Proceedings of CVPR 2005. USA: IEEE, 2005: 782-788.

[7] ZORDAN V B, VAN DER HORST N C, Mapping optical motion capture data to skeletal motion using a physical model[C]∥ Proceedings of SCA 2003. USA: ACM, 2003: 245-250.

[8] TAYLOR G W, HINTON G E, ROWEIS S T, Modeling Human Motion Using Binary Latent Variables[C]∥ Advances in Neural Information Processing Systems. USA: MIT Press, 2007: 1345-1352.

[9] PARK S I, HODGINS J K. Capturing and animating skin deformation in human motion[J]. ACM Transactions on Graphics, 2006, 25(3): 881-889.

[10] HSU E, GENTRY S, POPOVI J. Example-based control of human motion[C]∥ Proceedings of SCA 2004. USA: ACM, 2004: 69-77.

[11] CHAI J, HODGINS J K. Performance animation from low-dimensional control signals[J]. ACM Transactions on Graphics, 2005, 24(3): 686-696.

[12] DORFM K, DORFMULLER-ULHAAS K. Robust optical user motion tracking using a Kalman filter[R]. Augsburg, Germany:  Department of Computer, University of Augsburg, 2003.

[13] ARISTIDOU A, CAMERON J, LASENBY J, Real-time estimation of missing markers in human motion capture[C]∥ Proceedings of ICBBE 2008. China: IEEE, 2008: 238-247.

[1] 诸利君, 陈芨熙, 王子龙, 暴志刚, 顾新建, 乐承毅. 面向全生命周期的合同能源管理支持系统[J]. J4, 2014, 48(2): 190-199.
[2] 李懿,罗建勋,陈卫东,郑筱祥. 基于蒙皮骨骼的虚拟手交互碰撞模拟方法[J]. J4, 2014, 48(1): 105-112.
[3] 周晓慧, 陈纯, 谢作豪. 印染生产过程的仿真和优化[J]. J4, 2010, 44(7): 1377-1381.