Please wait a minute...
浙江大学学报(工学版)
能源工程     
纯化凹凸棒土催化废轮胎热解制取高值液态产物
丁宽,仲兆平,张波,刘志超
东南大学 能源与环境学院,能源热转换及其过程测控教育部重点实验室,江苏 南京 210096
Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite
DING Kuan, ZHONG Zhao-ping, ZHANG Bo, LIU Zhi-chao
School of Energy and Environment, Southeast University, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,  Nanjing 210096, China
 全文: PDF(1007 KB)   HTML
摘要:
为研究纯化凹凸棒土对废轮胎热解的影响,选取NaOH、HY-51、凹凸棒土(凹土,OA)和纯化凹土(PA)4种催化剂进行催化热解试验,利用主成分分析法分析催化剂对热解油组分变化的影响.结果表明:废轮胎非催化热解在550 ℃时产油率达到最高42.4%,4种催化剂均能提高产油率;热解油中脂肪烃含量随着温度升高而降低,而芳香烃逐渐成为主要组分;NaOH和HY-51可提高脂肪烃的含量,后者对芳香烃的影响更大;OA则能促进环烯烃的生成并催化单环芳烃转化为多环芳烃;PA能够有效地催化脂肪烃向单环芳烃转化.分析结果表明,PA在催化废轮胎热解制取高价值液态产物方面具有很好的应用前景.
Abstract:
To investigate the influence of attapulgite on pyrolysis of scrap tire, NaOH, HY-51, attapulgite (OA) and purified attapulgite (PA) were chosen for catalytic pyrolysis. The mechanism of catalysts on composition of pyrolysis oil was investigated through principal component analysis (PCA). The results show that the highest oil yield of non-catalytic pyrolysis reaches 42.4% at 550℃.  All the catalysts increase the oil yield. The content of aliphatic hydrocarbons reduces when temperature  rises, while aromatic hydrocarbons become major components. NaOH and HY-51 improvethe content of aliphatic hydrocarbons, while the latter shows greater impact on aromatic hydrocarbons. The production of cycloolefins, as well as the conversion of aromatic hydrocarbons from monocyclic (MAH) to polycyclic (PAH), are promoted by OA. PA is
beneficial for the conversion of aliphatic hydrocarbons to MAH.  Consequently, PA has a good prospect in the catalytic pyrolysis of scrap tire to produce valuable liquid products.Keywords: scrap tire; catalysis; pyrolysis; attapulgite; principal component analysis.
出版日期: 2014-11-01
:  X 705  
基金资助:
 国家“973”重点基础研究发展规划资助项目(2011CB201505);国家自然科学基金资助项目(51276040)
通讯作者: 仲兆平,男,教授     E-mail: zzhong@seu.edu.cn
作者简介: 丁宽(1988-),男,博士生,从事固体废弃物资源化利用方面研究. E-mail: yczl_dk@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

丁宽,仲兆平,张波,刘志超. 纯化凹凸棒土催化废轮胎热解制取高值液态产物[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.020.

DING Kuan, ZHONG Zhao-ping, ZHANG Bo, LIU Zhi-chao. Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.020.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.020        http://www.zjujournals.com/eng/CN/Y2014/V48/I11/2053

[1] WILLIAMS P T, BOTTRILL R P, CUNLIFFE A M. Combustion of tyre pyrolysis oil [J]. Process Safety and Environmental Protection, 1998, 76(4): 291-301.
[2] WILLIAMS P T, BRINDLE A J. Aromatic chemicals from the catalytic pyrolysis of scrap tyres [J]. Journal of Analytical and Applied Pyrolysis, 2003, 67(1): 143-164.
[3] OLAZAR M, AGUADO R; ARABIOURRUTIA M, et al. Catalyst effect on the composition of tire pyrolysis products [J]. Energy Fuels, 2008, 22(5): 2909-2916.
[4] SHAH J, JAN M R, MABOOD F. Catalytic conversion of waste tyres into valuable hydrocarbons [J]. Journal of Polymers and the Environment, 2007, 15(3): 207-211.
[5] WILLIAMS P T, BRINDLE A J. Catalytic pyrolysis of tyres: influence of catalyst temperature [J]. Fuel, 2002, 81(18): 2425-2434.
[6] DUNG N A, MHODMONTHIN A, WONGKASEMIIT S, et al. Effects of ITQ-21 and ITQ-24 as zeolite additives on the oil products obtained from the catalytic pyrolysis of waste tire [J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1): 338-344.
[7] 张兴华, 常杰, 王铁军, 等. 碱性条件下废轮胎真空热裂解研究[J]. 燃料化学学报, 2005, 33(6): 713-716.
ZHANG Xing-hua, CHANG Jie, WANG Tie-jun, et al. Vacuum pyrolysis of waste tires with basic additives. [J].Journal of Fuel Chemistry and Technology, 2005, 33(6): 713-716.
[8] ILKILIC C, AYDIN H. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine [J]. Fuel Processing Technology, 2011, 92(5): 1129-1135.
[9] KAR Y. Catalytic pyrolysis of car tire waste using expanded perlite [J]. Waste Management, 2011, 31(8): 1772-1782.
[10] SHAH J, JAN M R, MABOOD F. Catalytic conversion of waste tyres into valuable hydrocarbons [J]. Journal of Polymers and The
Environment, 2007, 15(3): 207-211.
[11] 石莹, 陈天虎, 张先龙, 等. 凹凸棒石黏土催化裂解生物质焦油[J]. 太阳能学报, 2010, 31(9): 1092-1096.
SHI Ying, CHEN Tian-hu, ZHANG Xian-long, et al. Biomass tar catalytic cracking use palygorskite as catalys [J]. Acta Energiae Solaris Sinica, 2010, 31(9): 1092-1096.
[12] 刘海波, 陈天虎, 张先龙, 等. 助剂对镍基催化剂催化裂解生物质气化焦油性能的影响[J]. 催化学报, 2010, 31(4): 409-414.
LIU Hai-bo, CHEN Tian-hu, ZHANG Xian-long, et al. Effect of additives on catalytic cracking of biomass gasification tar over nickel-based catalyst [J]. Chinese Journal of Catalysis, 2010, 31(4): 409-414.
[13] 周凯华. 凹凸棒石催化裂解生物质焦油[D]. 合肥: 合肥工业大学, 2009: 23-36.
ZHOU Kai-hua. Catalytic steam reforming of phenol as model compound of tar in biomass gasifieation over a novel palygorskit [D]. Hefei: Hefei University of Technology, 2009: 23-36.
[14] LI R, ZHONG Z P, JIN B S, et al. Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organic production [J]. Bioresource Technology, 2012, 119: 324-330.
[15] WILLIAMS P T, TAYLOR D T. Aromatization of tyre pyrolysis oil to yield polycyclic aromatic hydrocarbons [J]. Fuel, 1993, 72(11): 1469-1474.
[16] 张志霄, 池涌, 高雅丽, 等. 废轮胎热解油的成分分析及二次热解反应[J]. 工程热物理学报, 2005, 26(1): 159-162.
ZHANG Zhi-Xiao, CHI Yong, GAO Ya-li, et al. Characteristics of pyrolytic oil derived from pilot-scale pyrolysis of scrap tires and the secondary pyrolysis [J]. Journal of Engineering Thermophysics, 2005, 26(1): 159-162.
[17] ADJAYE J D, BAKHSHI N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts [J]. Fuel Processing Technology, 1995, 45(3): 161-183.
[18] UZUN B B, SARIOGLU N. Rapid and catalytic pyrolysis of corn stalks [J]. Fuel Processing Technology, 2009, 90(5): 705-716.
[19] 周杰, 刘宁, 李云, 等. 凹凸棒石粘土的显微结构特征[J]. 硅酸盐通报, 1999, 18(6): 50-55.
ZHOU Jie, LIU Ning, LI Yun, et al. Microscopic structure characteristics of attapulgite [J]. Bulletin of the Chinese Ceramic Socity, 1999, 18(6): 50-55.
[20] 刘海波. 凹凸棒石粘土负载铁镍催化裂解生物质焦油[D]. 合肥: 合肥工业大学, 2010: 25-29.
LIU Hai-bo. Catalytic decomposition of biomass tar over palygorskite clay supported Ni/Fe [D]. Hefei: Hefei University of Technology, 2010: 25-29.
[1] 毛华臻, 王飞, 毛飞燕, 池涌, 陆胜勇, 岑可法. 水热处理对污泥水分分布的影响[J]. 浙江大学学报(工学版), 2016, 50(12): 2283-2288.
[2] 刘海龙, 周家伟, 陈云敏, 李育超, 詹良通. 城市生活垃圾填埋场稳定化评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2336-2342.
[3] 张帅毅,黄亚继,王昕晔,严玉朋,刘长奇,陈波. 模拟垃圾焚烧过程中氯对铅动态挥发特性的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 485-490.
[4] 侯霞丽,李晓东,陈彤,陆胜勇,纪莎莎,任咏. 垃圾焚烧飞灰中主要元素的深度分布及形态[J]. 浙江大学学报(工学版), 2015, 49(5): 930-937.
[5] 陈彤, 詹明秀, 林晓青, 李晓东, 陆胜勇, 严建华. 特定污泥干化过程中二恶英抑制气体排放特性[J]. 浙江大学学报(工学版), 2015, 49(2): 322-329.
[6] 郭星明,何勇. 供应链实时库存与沙漏分播配货本体模型[J]. 浙江大学学报(工学版), 2015, 49(1): 54-62.
[7] 张振营,严立俊. 城市新鲜生活垃圾变形与强度的关联特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1962-1967.
[8] 邵志伟, 黄亚继, 张强, 刘培刚, 严玉朋. O2/CO2气氛下污泥与烟煤混合燃烧特性[J]. 浙江大学学报(工学版), 2014, 48(10): 1739-1745.
[9] 洪晨,邢奕,王志强,司艳晓,周亮. 不同pH下表面活性剂对污泥脱水性能的影响[J]. 浙江大学学报(工学版), 2014, 48(5): 850-857.
[10] 符成龙,麻红磊,池涌,严建华,倪明江. 热水解处理制革污泥过程中总Cr的转移与稳定性研究[J]. J4, 2013, 47(9): 1631-1636.
[11] 姬亚,陆胜勇,林晓青,李晓东,严建华. 危险废物焚烧炉烟气中二恶英气固相分配[J]. J4, 2012, 46(7): 1238-1242.
[12] 谢浩辉,麻红磊,池涌,马增益. 污泥结合水测量方法和水分分布特性[J]. J4, 2012, 46(3): 503-508.
[13] 翁焕新, 章金骏, 曹彦圣, 马学文. 污泥陶粒的性能特征与烧制工艺[J]. J4, 2011, 45(10): 1877-1883.
[14] 王勤, 严建华, 潘新潮, 池涌, 高飞. 利用热等离子体熔融垃圾焚烧飞灰[J]. J4, 2011, 45(1): 141-145.
[15] 蒋旭光, 李春雨, 池涌, 俞恺, 傅娟娟. 医疗废物焚烧过程中无机溴的迁移特性研究[J]. J4, 2010, 44(9): 1787-1792.