Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (2): 351-361    DOI: 10.3785/j.issn.1008-973X.2025.02.013
机械工程、能源工程     
柔性空间机器人预定义时间自适应滑模控制
刘宜成(),杨迦凌,唐瑞,程靖
四川大学 电气工程学院,四川 成都 610065
Predefined time adaptive sliding mode control for flexible space robot
Yicheng LIU(),Jialing YANG,Rui TANG,Jing CHENG
College of Electrical Engineering, Sichuan University, Chengdu 610065, China
 全文: PDF(2919 KB)   HTML
摘要:

针对具有典型非线性特性的多段线驱动柔性空间机器人的轨迹跟踪控制问题,提出基于预定义时间的自适应滑模控制方法. 基于常曲率方法和拉格朗日法,建立多段线驱动柔性空间机器人的动力学模型. 设计基于预定义时间理论的滑模控制器,利用径向基函数(RBF)神经网络补偿多段线驱动柔性空间机器人系统的建模误差和外界干扰. 利用Lyapunov理论,证明轨迹跟踪误差可以在预定义时间内收敛. 通过数值仿真验证了模型和控制器的有效性,与固定时间控制器和无补偿的控制器相比,所提出的控制器使系统轨迹误差具有更快的收敛速度.

关键词: 柔性空间机器人预定义时间稳定性径向基函数神经网络轨迹跟踪滑模控制    
Abstract:

An adaptive sliding mode control method based on predefined time was proposed for the trajectory tracking control problem of a flexible space robot with typical nonlinear characteristics. The dynamic model of the multi-stage cable-driven flexible space robot was established by using the constant curvature method and Lagrangian formulation. A sliding mode controller based on predefined time theory was designed. A radial basis function (RBF) neural network was employed to compensate for modeling errors and external disturbances in the multi-stage cable-driven flexible space robot system. The convergence of trajectory tracking error within predefined time was proven using Lyapunov theory. The effectiveness of the model and controller was verified through numerical simulations. Comparative analysis against fixed-time controllers and uncompensated controllers showed that the proposed controller facilitated faster convergence of system trajectory error.

Key words: flexible space robot    predefined time stability    radial basis function neural network    trajectory tracking    sliding mode control
收稿日期: 2023-12-26 出版日期: 2025-02-11
CLC:  TP 241  
基金资助: 清华大学横向协作项目(HG2020153).
作者简介: 刘宜成(1975—),男,副教授,博士,从事柔性机器人、空间机器人建模和控制的研究. orcid.org/0000-0003-3571-3839. E-mail:liuyicheng@scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘宜成
杨迦凌
唐瑞
程靖

引用本文:

刘宜成,杨迦凌,唐瑞,程靖. 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报(工学版), 2025, 59(2): 351-361.

Yicheng LIU,Jialing YANG,Rui TANG,Jing CHENG. Predefined time adaptive sliding mode control for flexible space robot. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 351-361.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.013        https://www.zjujournals.com/eng/CN/Y2025/V59/I2/351

图 1  柔性空间机器人的三维模型
图 2  柔性机械臂
图 3  在轨服务任务场景
图 4  柔性臂弯曲的示意图
图 5  弯曲平面角$ \mathit{\varphi } $
图 6  弯曲平面角为0时的坐标变换
图 7  RBF神经网络的结构
参数数值说明
$ {m}_{0} /{{\mathrm{kg}}}$240基座质量
$ {I}_{0} /(\text{kg}\cdot {{\mathrm{m}}}^{2})$$ \left[\begin{array}{ccc}104.97& 0& 0\\ 0& 34.97& 0\\ 0& 0& 103.34\end{array}\right]\; $基座转动惯量
$ b/{\mathrm{m}} $$ [0.35,\;0,\;0.5{]}^{{\rm T}} $机械臂基座位置
$ \rho /(\text{kg}\cdot {{\mathrm{m}}}^{-3})$4510中心杆密度
$ E /({\mathrm{N}}\cdot {{\mathrm{m}}}^{-2})$$ 1.05\times 1{0}^{11} $弹性模量
$ A /{{\mathrm{m}}}^{2}$0.07中心杆截面积
$ l/{\mathrm{m}} $0.45中心杆长度
$ {I}_{xx}/{{\mathrm{m}}}^{4} $$ 3.98 \times 10^{-4} $中心杆惯性矩
$ {m}_{{\mathrm{d}}}/\text{kg} $0.117圆盘质量
$ {I}_{{\mathrm{d}}}/ (\rm{kg}\cdot {{\mathrm{m}}}^{2} )$$ \left[\begin{array}{*{20}{c}}5.42& 0& 0\\ 0& 10.64& 0\\ 0& 0& 5.42\end{array}\right]\times 1{0}^{-3} $圆盘转动惯量
表 1  柔性空间机器人的模型参数
图 8  $ {\boldsymbol{q}}\left(0\right)=[0.08,0.08,0.08,0.08,0.08,0.08{]}^{\mathit{{\rm T}}} $时的角度跟踪
图 9  $ {\boldsymbol{q}}\left(0\right)=[0.3,0.3,0.3,0.3,0.3,0.3{]}^{\mathit{{\rm T}}} $时的角度跟踪
关节$ {T}_{\text{r1}} $/s$ {T}_{\text{r2}} $/s
$ {\varphi }_{1} $0.0990.357
$ {\theta }_{1} $0.0990.458
$ {\varphi }_{2} $0.0990.357
$ {\theta }_{2} $0.0990.694
$ {\varphi }_{3} $0.0990.851
$ {\theta }_{3} $0.0990.358
表 2  $ {\boldsymbol{q}}\left(0\right)=[0.08,0.08,0.08,0.08,0.08,0.08{]}^{\mathit{{\rm T}}} $时的收敛时间
关节$ {T}_{\text{r3}} $/s$ {T}_{\text{r4}} $/s
$ {\varphi }_{1} $0.2590.392
$ {\theta }_{1} $0.2590.392
$ {\varphi }_{2} $0.2590.392
$ {\theta }_{2} $0.2590.392
$ {\varphi }_{3} $0.2590.761
$ {\theta }_{3} $0.2590.392
表 3  $ {\boldsymbol{q}}\left(0\right)=[0.3,0.3,0.3,0.3,0.3,0.3{]}^{\mathit{{\rm T}}} $时的收敛时间
图 10  实际的干扰项和估计的干扰项
图 11  关节角度的跟踪误差
图 12  末端的期望速度
图 13  轨迹规划后的角度跟踪结果
图 14  基座位姿变化
1 BASMADJI F L, SEWERYN K, SASIADEK J Z Space robot motion planning in the presence of nonconserved linear and angular momenta[J]. Multibody System Dynamics, 2020, 50 (1): 71- 96
doi: 10.1007/s11044-020-09753-x
2 GIORDANO A M, OTT C, ALBU-SCHÄFFER A, et al Coordinated control of spacecraft's attitude and end-effector for space robots[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 2108- 2115
doi: 10.1109/LRA.2019.2899433
3 WU Y H, YU Z C, LI C Y, et al Reinforcement learning in dual-arm trajectory planning for a free-floating space robot[J]. Aerospace Science and Technology, 2020, 98: 105657
doi: 10.1016/j.ast.2019.105657
4 ZHANG Y C, LI P C, QUAN J L, et al Progress, challenges, and prospects of soft robotics for space applications[J]. Advanced Intelligent Systems, 2023, 5 (3): 2200071
doi: 10.1002/aisy.202200071
5 DIAN S Y, ZHU Y Q, XIANG G F, et al A novel disturbance-rejection control framework for cable-driven continuum robots with improved state parameterizations[J]. IEEE Access, 2022, 10: 91545- 91556
doi: 10.1109/ACCESS.2022.3202934
6 AYALA-CARRILLO J E, PARRA-VEGA V, OLGUíN-DíAZ E, et al Cascade control for robust tracking of continuum soft robots with finite-time convergence of pneumatic system[J]. IEEE Control Systems Letters, 2022, 7: 577- 582
7 JIN R Y, ROCCO P, GENG Y H Observer-based fixed-time tracking control for space robots in task space[J]. Acta Astronautica, 2021, 184: 35- 45
doi: 10.1016/j.actaastro.2021.04.002
8 SÁNCHEZ-TORRES J D, GÓMEZ-GUTIÉRREZ D, LÓPEZ E, et al A class of predefined-time stable dynamical systems[J]. IMA Journal of Mathematical Control and Information, 2018, 35 (Suppl.1): i1- i29
9 YE D, ZOU A M, SUN Z W Predefined-time predefined-bounded attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58 (1): 464- 472
10 JIN R Y, GENG Y H, CHEN X Q Predefined-time control for free-floating space robots in task space[J]. Journal of the Franklin Institute, 2021, 358 (18): 9542- 9560
doi: 10.1016/j.jfranklin.2021.09.030
11 LIU Y C, YAN W, ZHANG T, et al Trajectory tracking for a dual-arm free-floating space robot with a class of general nonsingular predefined-time terminal sliding mode[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (5): 3273- 3286
12 KIM S J, JIN M, SUH J H A study on the design of error-based adaptive robust RBF neural network back-stepping controller for 2-DOF snake robot’s head[J]. IEEE Access, 2023, 11: 23146- 23156
doi: 10.1109/ACCESS.2023.3249346
13 ZHANG Y, WANG F, ZHANG J Adaptive finite-time tracking control for output-constrained nonlinear systems with non-strict-feedback structure[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34 (4): 560- 574
doi: 10.1002/acs.3099
14 HE C, WU J, DAI J Y, et al Fixed-time adaptive neural tracking control for a class of uncertain nonlinear pure-feedback systems[J]. IEEE Access, 2020, 8: 28867- 28879
doi: 10.1109/ACCESS.2020.2972353
15 胡忠华, 徐文福, 杨太玮, 等 刚柔混合双臂空间机器人抓持-操作协同规划[J]. 宇航学报, 2022, 43 (10): 1311
HU Zhonghua, XU Wenfu, YANG Taiwei, et al Coordinated grasp and operation planning for hybrid rigid flexible dual arm space robot[J]. Journal of Astronautics, 2022, 43 (10): 1311
16 RONE W S, BEN-TZVI P Continuum robot dynamics utilizing the principle of virtual power[J]. IEEE Transactions on Robotics, 2013, 30 (1): 275- 287
17 胡海燕, 王鹏飞, 孙立宁, 等 线驱动连续型机器人的运动学分析与仿真[J]. 机械工程学报, 2010, 46 (19): 1- 8
HU Haiyan, WANG Pengfei, SUN Lining, et al Kinematic analysis and simulation for cable-driven continuum robot[J]. Journal of Mechanical Engineering, 2010, 46 (19): 1- 8
doi: 10.3901/JME.2010.19.001
18 丁萌, 顾秀涛, 郑先杰, 等 基于模糊补偿的连续型空间机械臂预定时间控制[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1175- 1180
DING Meng, GU Xiutao, ZHENG Xianjie, et al Predefined-time control of continuum space manipulator based on fuzzy compensation[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1175- 1180
19 LIU Y, LI H Y, LU R Q, et al An overview of finite/fixed-time control and its application in engineering systems[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (12): 2106- 2120
doi: 10.1109/JAS.2022.105413
20 ASSALI E A Predefined-time synchronization of chaotic systems with different dimensions and applications[J]. Chaos, Solitons and Fractals, 2021, 147: 110988
doi: 10.1016/j.chaos.2021.110988
21 WU C H, YAN J G, SHEN J H, et al Predefined-time attitude stabilization of receiver aircraft in aerial refueling[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68 (10): 3321- 3325
22 LI H J, CAI Y L On SFTSM control with fixed‐time convergence[J]. IET Control Theory and Applications, 2017, 11 (6): 766- 773
doi: 10.1049/iet-cta.2016.1457
[1] 皇金锋,李啸天. 非最小相位的单电感双输出 Buck-Boost变换器的复合控制方法[J]. 浙江大学学报(工学版), 2024, 58(6): 1266-1274.
[2] 皇金锋,周杰,黄红杰. 基于滑模自抗扰的储能变流器控制策略[J]. 浙江大学学报(工学版), 2024, 58(10): 2171-2181.
[3] 赵影,王达,倪佳华,凌永辉,项基,郑婷婷. 控制同步发电机加速功率的储能滑模控制器[J]. 浙江大学学报(工学版), 2023, 57(5): 1050-1060.
[4] 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1168-1174.
[5] 于瑞,徐雪峰,周华,杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(3): 436-443.
[6] 张国澎,李子汉,王浩,郑征. 隔离型交?直流固态变压器前后级一体化滑模控制[J]. 浙江大学学报(工学版), 2022, 56(3): 622-630.
[7] 周兵,刘阳毅,吴晓建,柴天,曾勇强,潘倩兮. 主动前轮转向和直接横摆力矩集成控制[J]. 浙江大学学报(工学版), 2022, 56(12): 2330-2339.
[8] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[9] 李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.
[10] 李剑,汤文成. 基于H∞理论的滚珠丝杠进给系统滑模控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1497-1504.
[11] 朱艺锋,吴党建,白冰洋,岳豪. 单相五电平脉冲整流器滑模比例积分谐振控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1578-1586.
[12] 陶正瑞,党嘉强,徐锦泱,安庆龙,陈明,王力,任斐. 曲面基体绝缘涂镀层涡流测厚高精度标定方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1218-1227.
[13] 陈朝萌,周晓军,杨辰龙,吕浩亮,魏杰超. 高速电驱动履带车辆紧急制动控制策略[J]. 浙江大学学报(工学版), 2020, 54(3): 442-449.
[14] 吴海东,司振立. 基于线性矩阵不等式的智能车轨迹跟踪控制[J]. 浙江大学学报(工学版), 2020, 54(1): 110-117.
[15] 邵光成,章坤,王志宇,王小军,卢佳. 基于IABC-RBF神经网络的地下水埋深预测模型[J]. 浙江大学学报(工学版), 2019, 53(7): 1323-1330.