Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (1): 110-117    DOI: 10.3785/j.issn.1008-973X.2020.01.013
土木工程、交通工程     
基于线性矩阵不等式的智能车轨迹跟踪控制
吴海东(),司振立
吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130022
Intelligent vehicle trajectory tracking control based on linear matrix inequality
Hai-dong WU(),Zhen-li SI
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
 全文: PDF(1058 KB)   HTML
摘要:

针对传统的基于精确数学模型的智能车轨迹跟踪控制器跟踪精度低,鲁棒性弱,很难适应复杂多变的驾驶环境等问题,结合线性矩阵不等式(LMI)鲁棒控制具有易于求解、抗干扰能力强等优点,提出基于LMI的智能车轨迹跟踪控制方法. 将车辆侧向动力学状态空间模型进行坐标变换,得到基于跟踪误差的车辆侧向动力学状态空间模型,采用饱和线性轮胎得到车辆侧向动力学多胞型模型;设计LMI反馈控制器,在控制器中引入前馈控制量,以消除侧向位置稳态误差. Carsim和Matlab/Simulink的联合仿真表明,该控制器在保证车辆稳定性的基础上具有较高的跟踪精度,对车速和路面附着系数具有较强的鲁棒性. 与模型预测控制器(MPC)和预瞄驾驶员模型(PDM)控制器进行对比,结果表明,设计的该控制器轨迹跟踪精度更优.

关键词: 轨迹跟踪线性矩阵不等式(LMI)饱和线性轮胎多胞型模型联合仿真    
Abstract:

The traditional intelligent vehicle trajectory tracking controller based on precise mathematical model had the problems such as low tracking accuracy, weak robustness and difficult to adapt to the complex and changeable driving environment. An intelligent vehicle trajectory tracking control method was proposed based on linear matrix inequality (LMI) which had the advantages of easy to solve and strong anti-interference ability in order to solve these problems. The coordinate of vehicle lateral dynamic state space model was transformed to obtain the vehicle lateral dynamic state space model based on tracking error, and the vehicle lateral dynamics poly-topic model was got by using saturated linear tires. The LMI feedback controller was designed and the feedforward control amount was introduced in the controller to eliminate the lateral position steady error. The co-simulation of Carsim and Matlab/Simulink showed that the controller had high tracking accuracy and strong robustness to vehicle speed and road adhesion coefficient with ensuring vehicle stability. Results showed that the designed controller was better in trajectory tracking accuracy compared with the model predictive control (MPC) controller and preview driver model (PDM) controller.

Key words: trajectory tracking    linear matrix inequality (LMI)    saturated linear tire    poly-topic model    co-simulation
收稿日期: 2019-06-15 出版日期: 2020-01-05
CLC:  U 461  
基金资助: 国家自然科学基金资助项目(51775224)
作者简介: 吴海东(1978—),男,副教授,从事车辆动力学的研究. orcid.org/0000-0001-6772-8803. E-mail: wuhd@jlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴海东
司振立

引用本文:

吴海东,司振立. 基于线性矩阵不等式的智能车轨迹跟踪控制[J]. 浙江大学学报(工学版), 2020, 54(1): 110-117.

Hai-dong WU,Zhen-li SI. Intelligent vehicle trajectory tracking control based on linear matrix inequality. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 110-117.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.01.013        http://www.zjujournals.com/eng/CN/Y2020/V54/I1/110

图 1  二自由度车辆模型
图 2  轨迹上参考点计算
图 3  不同控制器的轨迹跟踪仿真结果
图 4  不同速度下的轨迹跟踪仿真结果
图 5  不同路面附着系数下的轨迹跟踪仿真结果
1 LI A J, ZHAO W Z, WANG X B, et al ACT-R cognitive model based trajectory planning method study for electric vehicle's active obstacle avoidance system[J]. Energies, 2018, 11 (1): 1- 21
2 李骏, 邱少波, 李红建, 等 智慧城市的智能汽车[J]. 中国科学(信息科学), 2016, 46 (5): 551- 559
LI Jun, QIU Shao-bo, LI Hong-jian, et al Smart vehicle for smart city[J]. Scientia Sinica (Informationis), 2016, 46 (5): 551- 559
3 GHARAVI H, PRASAD K V, IOANNOU P Scanning advanced automobile technology[J]. Proceedings of the IEEE, 2007, 95 (2): 328- 333
doi: 10.1109/JPROC.2006.888380
4 MACADAM C C Application of an optimal preview control for simulation of closed-loop automobile driving[J]. IEEE Transactions on Systems, Man and Cybernetics, 1981, 11 (6): 393- 399
doi: 10.1109/TSMC.1981.4308705
5 GUO K, GUAN H Modelling of driver/vehicle directional control system[J]. Vehicle System Dynamics, 1993, 22 (3/4): 141- 184
6 姜立标, 吴中伟 基于趋近律滑模控制的智能车辆轨迹跟踪研究[J]. 农业机械学报, 2018, 49 (3): 381- 386
JIANG Li-biao, WU Zhong-wei Sliding mode control for intelligent vehicle trajectory tracking based on reaching law[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49 (3): 381- 386
doi: 10.6041/j.issn.1000-1298.2018.03.048
7 SOUDBAKHSH D, ESKANDARIAN A Comparison of linear and nonlinear controllers for active steering of vehicles in evasive manoeuvres[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2012, 226 (12): 215- 232
8 李兵. 基于联合仿真的智能车辆路径跟踪控制研究[D]. 大连: 大连理工大学, 2014.
LI Bing. Research of intelligent vehicle trajectory tracking control based on collaborative simulation [D]. Dalian: Dalian University of Technology, 2014.
9 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014: 22-133.
10 FALCONE P, BORRELLI F, ASGARI J, et al Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15 (3): 566- 580
doi: 10.1109/TCST.2007.894653
11 孙银健. 基于模型预测控制的无人驾驶车辆轨迹跟踪控制算法研究[D]. 北京: 北京理工大学, 2015.
SUN Yin-jian. Research on model predictive control-based trajectory tracking algorithm for unmanned vehicles [D]. Beijing: Beijing Institute of Technology, 2015.
12 VELHAL S, THOMAS S Improved LTVMPC design for steering control of autonomous vehicle[J]. Journal of Physics: Conference Series, 2017, 783 (1): 012028
13 WANG X, JIBIN H U, JUN N I. MPC-based trajectory tracking via active front steering and external yaw moment [C] // 4th International Conference on Vehicle, Mechanical and Electrical Engineering. Taiyuan: [s.n.] 2017.
14 WANG P W, GAO S, LI L Automatic steering control strategy for unmanned vehicles based on robust backstepping sliding mode control theory[J]. IEEE Access, 2019, 7: 64984- 64992
doi: 10.1109/ACCESS.2019.2917507
15 CALZOLARI D, SCHURMANN B, ALTHOFF M. Comparison of trajectory tracking controllers for autonomous vehicles [C] // 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama: IEEE, 2017.
16 GUO J H, LUO Y G, LI K Q Robust gain-scheduling automatic steering control of unmanned ground vehicles under velocity-varying motion[J]. Vehicle System Dynamics, 2019, 57 (4): 595- 616
doi: 10.1080/00423114.2018.1475677
17 XIA Y Q, PU F, LI S F, et al Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (5): 3091- 3099
doi: 10.1109/TIE.2016.2531021
18 吴艳, 王丽芳, 李芳 基于滑模自抗扰的智能车路径跟踪控制[J]. 控制与决策, 2019, 34 (10): 2150- 2156
WU Yan, WANG Li-fang, LI Fang Intelligent vehicle path following control based on sliding mode active disturbance rejection control[J]. Control and Decision, 2019, 34 (10): 2150- 2156
19 RAJAMANI R. Vehicle dynamics and control [M]. Berlin: Springer, 2011: 27-54.
20 ZHANG D Z, LI K Q, WANG J Q A curving ACC system with coordination control of longitudinal car-following and lateral stability[J]. Vehicle System Dynamics, 2012, 50 (7): 1085- 1102
doi: 10.1080/00423114.2012.656654
21 刘豹, 唐万生. 现代控制理论[M]. 北京: 机械工业出版社, 2006: 82-97.
22 APKARIAN P, GAHINET P, BECKER G Self-scheduled H-infinity control of linear parameter-varying systems: a design example[J]. Automatica, 1995, 31 (9): 1251- 1261
doi: 10.1016/0005-1098(95)00038-X
23 KOTHARE M V, MORARI M, BALAKRISHNAN V Robust constrained model predictive control using linear matrix inequalities[J]. Automatica, 1996, 32 (10): 1361- 1379
doi: 10.1016/0005-1098(96)00063-5
24 张晨晨, 夏群生, 何乐 质心侧偏角对车辆稳定性影响的研究[J]. 汽车工程, 2011, (4): 277- 282
ZHANG Chen-chen, XIA Qun-sheng, HE Le A study on the influence of sideslip angle at mass center on vehicle stability[J]. Automotive Engineering, 2011, (4): 277- 282
[1] 陈浩,王新杰,王炅,席占稳,曹云. 基于克里金模型的微电热驱动器优化设计[J]. 浙江大学学报(工学版), 2020, 54(8): 1490-1496.
[2] 张雷,徐海军,邹腾安,徐小军,常雨康. 嵌套Z轴式水下矢量推进系统建模与特性分析[J]. 浙江大学学报(工学版), 2020, 54(3): 450-458.
[3] 陈玉羲,龚国芳,石卓,杨华勇. 基于施工数据的TBM支撑推进协调控制系统[J]. 浙江大学学报(工学版), 2019, 53(2): 250-257.
[4] 李劲林, 王佳斌, 何闻. 非接触式定位隔振平台机电联合仿真分析[J]. 浙江大学学报(工学版), 2019, 53(1): 146-157.
[5] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[6] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[7] 檀盼龙, 孙青林, 陈增强. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报(工学版), 2017, 51(5): 992-999.
[8] 陶国良, 周超超, 尚策. 气动位置伺服嵌入式控制器及控制策略[J]. 浙江大学学报(工学版), 2017, 51(4): 792-799.
[9] 李明达,隗海林,门玉琢,包翠竹. 基于实际换挡规律的卡车列队行驶起步控制[J]. 浙江大学学报(工学版), 2016, 50(5): 887-892.
[10] 吴志军, 朱绍鹏, 刘孝龙, 邱斌斌. 电动全地形车动力性及乘坐舒适性分析[J]. J4, 2013, 47(12): 2227-2233.
[11] 毛维杰,张媛媛. 具有区间时变时滞的中立型系统稳定性分析[J]. J4, 2012, 46(5): 848-852.
[12] 林小夏,张树有,陈婧,赵振. 多体动力学与有限元联合仿真的时变载荷历程模型[J]. J4, 2011, 45(9): 1643-1649.
[13] 钱伟, 沈国江, 孙优贤. 中立型不确定时滞系统的鲁棒稳定性[J]. J4, 2010, 44(2): 232-236.
[14] 帅鑫, 李艳君, 吴铁军. 一种柔性机械臂末端轨迹跟踪的预测控制算法[J]. J4, 2010, 44(2): 259-264.
[15] 张建海, 张森林, 刘妹琴. 离散时滞标准神经网络模型的鲁棒稳定性分析[J]. J4, 2009, 43(8): 1383-1388.