Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (5): 1050-1060    DOI: 10.3785/j.issn.1008-973X.2023.05.021
电气工程     
控制同步发电机加速功率的储能滑模控制器
赵影1,2(),王达1,倪佳华3,凌永辉3,项基3,*(),郑婷婷1
1. 国网内蒙古东部电力有限公司,电力科学研究院,内蒙古 呼和浩特 0100101
2. 浙江大学 工程师学院,浙江 杭州 310027
3. 浙江大学 电气工程学院,浙江 杭州 310027
Energy storage sliding mode controller for controlling acceleration power of synchronous generator
Ying ZHAO1,2(),Da WANG1,Jia-hua NI3,Yong-hui LING3,Ji XIANG3,*(),Ting-ting ZHENG1
1. State Grid East Inner Mongolia Electric Power Co. Ltd, Electric Power Research Institute, Hohhot 010010, China
2. Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
3. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2472 KB)   HTML
摘要:

针对电力系统功角稳定性问题,在建模分析储能与同步发电机能量交互关系的基础上,提出一种控制同步发电机加速功率的储能滑模控制器. 利用滑模控制的强鲁棒性,将同步发电机的转速偏差引入滑模面,并通过控制同步发电机的加速功率,使同步发电机与电网在控制上解耦,并使同步发电机的频率恢复至额定值,从而增强系统的功角稳定性. 为了削弱滑模控制中的抖振现象,采用非线性光滑函数代替滑模控制中的符号函数,得到实用化的滑模控制器. 通过构造李雅普诺夫函数进行所提控制器的稳定性分析. 在Matlab/Simulink的仿真测试中,对比所提控制器和参数反馈线性化控制器(PFL)、功率振荡阻尼控制器(POD)以及柔性控制器(FC)在扰动下的系统性能,结果表明所提控制器稳定时间比其他3种控制方法缩短30%以上.

关键词: 同步发电机功角稳定储能滑模控制加速功率    
Abstract:

Aiming at the problem of power angle stability in power systems, an energy storage sliding mode controller was proposed to control the acceleration power of synchronous generator based on the detailed modeling and analysis of the interaction between energy storage and synchronous generator energy. Using the strong robustness of sliding mode control, the speed deviation of the synchronous generator was introduced into the sliding mode surface. The acceleration power of the synchronous generator was controlled to decouple the synchronous generator from the power grid in control. The frequency of the synchronous generator was restored to the rated value. Thus the power angle stability of the system could be enhanced. A nonlinear smooth function was used to replace the sign function in the sliding mode control, then a practical sliding mode controller was obtained to weaken the chattering phenomenon in the sliding mode control. The stability of the proposed controller was analyzed by constructing the Lyapunov function. In the Matlab/Simulink, the performance of the system under disturbance was compared among the parameter feedback linearization controller (PFL), the power oscillation damping controller (POD), the flexible controller (FC) and the proposed method. The results show that the proposed controller has a stability time shortened by more than 30% compared to the aforementioned three methods.

Key words: synchronous generator    power angle stability    energy storage    sliding mode control    acceleration power
收稿日期: 2021-12-19 出版日期: 2023-05-09
CLC:  TM 712  
基金资助: 国网内蒙古东部电力公司科技项目(526604210005);国家自然科学基金资助项目(62173295)
通讯作者: 项基     E-mail: ee_zhaoying@zju.edu.cn;jxiang@zju.edu.cn
作者简介: 赵影(1990—),女,硕士生,从事储能控制研究. orcid.org/0000-0001-6801-5944. E-mail: ee_zhaoying@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵影
王达
倪佳华
凌永辉
项基
郑婷婷

引用本文:

赵影,王达,倪佳华,凌永辉,项基,郑婷婷. 控制同步发电机加速功率的储能滑模控制器[J]. 浙江大学学报(工学版), 2023, 57(5): 1050-1060.

Ying ZHAO,Da WANG,Jia-hua NI,Yong-hui LING,Ji XIANG,Ting-ting ZHENG. Energy storage sliding mode controller for controlling acceleration power of synchronous generator. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1050-1060.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.021        https://www.zjujournals.com/eng/CN/Y2023/V57/I5/1050

图 1  储能结构与本地PQ轴下的等值电路
图 2  同步旋转坐标轴下含储能的多机电力系统等值电路
图 3  实用化储能滑模控制器
图 4  四机两区域系统结构图
图 5   ${G_1}$端电压参考值增加5%的仿真结果图
图 6  母线-7短路故障的仿真结果
控制器 超调量/ (°) 控制器 超调量/ (°)
未安装储能 2.37 FC 2.33
PFL 2.62 所提控制器 2.02
POD 2.25
表 1  三相短路故障超调量对比
图 7  14机59节点系统结构图
储能序号 ${{S_i^{{\rm{ESS}}}}}/{{{P_{{\rm{m}},i}}}}$ ${{S_i^{{\rm{ESS}}}}}/{{P_{\rm{m}}^{{\rm{total}}}}}$ ${{S_i^{{\rm{ESS}}}}}/{{{S^{{\rm{SG,total}}}}}}$
G1端口储能 35.625 2 0.577 5 0.456 2
G2端口储能 11.111 6 1.732 6 1.368 9
G6端口储能 11.111 6 2.021 4 1.597 0
G7端口储能 14.184 4 0.577 5 0.456 2
G8端口储能 12.697 1 0.770 0 0.608 3
G12端口储能 11.110 0 0.288 7 0.228 1
表 2  不同储能容量比值
案例 描述
1 t=10 s时,G1端电压参考值增加5%
2 t=10 s时,母线-205发生0.1 s三相短路故障
3 t=10 s时,母线-309发生0.1 s三相短路故障
4 t=10 s时,母线-509发生0.1 s三相短路故障
表 3  14机59节点系统测试案例说明
图 8  案例1电压调整仿真结果
图 9  案例2-4短路故障仿真结果
1 王清, 薛安成, 郑元杰, 等 双馈型风电集中接入对暂态功角稳定的影响分析[J]. 电网技术, 2016, 40 (3): 875- 881
WANG Qing, XUE An-cheng, ZHENG Yuan-jie, et al Impact of DFIG-based wind power integration on the transient stability of power systems[J]. Power System Technology, 2016, 40 (3): 875- 881
doi: 10.13335/j.1000-3673.pst.2016.03.031
2 CHOWDHURY M A, HOSSEINZADEH N, POTA H R, et al Transient stability of power system integrated with doubly fed induction generator wind farms[J]. IET Renewable Power Generation, 2015, 9 (2): 184- 194
doi: 10.1049/iet-rpg.2014.0035
3 傅质馨, 张晶晶, 崔晓丹, 等 储能支撑光伏参与电网一次调频的优化控制策略研究[J]. 可再生能源, 2021, 39 (11): 1530- 1540
FU Zhi-xin, ZHANG Jing-jing, CUI Xiao-dan, et al Research on optimal control strategy of photovoltaic system supported by energy storage participating in primary frequency regulation of power grid[J]. Proceedings of the CSEE, 2021, 39 (11): 1530- 1540
doi: 10.3969/j.issn.1671-5292.2021.11.017
4 姜惠兰, 李政, 张驰, 等 SMES-DFIG提高多机系统暂态功角稳定性的控制策略[J]. 高电压技术, 2021, 47 (3): 993- 1001
JIANG Hui-lan, LI Zheng, ZHANG Chi, et al Control strategy of SMES-DFIG for improving transient power angle stability of multi-machine system[J]. High Voltage Engineering, 2021, 47 (3): 993- 1001
doi: 10.13336/j.1003-6520.hve.20191421
5 杨海涛, 吉平, 苗淼, 等. 未来中国特高压电网结构形态与电源组成相互关系分析[J]. 电力系统自动化, 2018, 42(6): 9­17.
YANG Hai-tao, JI Ping, MIAO Miao, et al. Analysis on interrelationship between future UHV power grid structural form and power source composition in China [J]. Automation of Electric Power Systems, 2018, 42(6): 9­17.
6 BLOOM A, HELMAN U, HOLTTINEN H, et al. It's indisputable: five facts about planning and operating modern power systems [J]. IEEE Power and Energy Magazine, 2017, 15(6): 22­30.
7 ZHU Y, LIU C, KUN K, et al. Optimization of battery energy storage to improve power system oscillation damping [J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1015­1024.
8 FARRAJ A, HAMMAND E, KUNDUR D. A cyber enabled stabilizing control scheme for resilient smart grid systems [J]. IEEE Transactions on Smart Grid, 2016, 7(4): 1856­1865.
9 FARRAJ A, HAMMAND E, KUNDUR D. On the impact of cyber-attacks on data integrity in storage based transient stability control [J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3322­3333.
10 FARRAJ A, HAMMAND E, KUNDUR D. On the use of energy storage systems and linear feedback optimal control for transient stability [J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1575­1585.
11 AYAR M, OBUZ S, TREVIZAN R, et al. A distributed control approach for enhancing smart grid transient stability and resilience [J]. IEEE Transactions on Smart Grid, 2017, 8(6): 3035­3044.
12 LUCIA W, GHEITASI K, BAGHERZADEH M. A low computationally demanding model predictive control strategy for robust transient stability in smart grid [C]// 2018 IEEE Conference on Decision and Control (CDC). USA: Miami Beach, FL, IEEE, 2018: 6013­6018.
13 FARRAJ A, HAMMAD E, KUNDUR D. A storage based multiagent regulation framework for smart grid resilience [J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3859­3869.
14 孙立明, 杨博. 超级电容储能系统的无源分数阶滑模控制设计[J]. 电力系统保护与控制, 2020, 48(16): 76­83.
SUN Li-ming, YANG Bo. Passive fractional-order sliding-mode control design of a super capacitor energy storage system [J]. Power System Protection and Control, 2020, 48(16): 76­83.
15 杨博, 王俊婷, 王景博, 等. 超导磁储能系统自适应分数阶滑模控制设计[J]. 电网技术, 2020, 44(5): 1714-1722.
YANG Bo, WANG Jun-ting, WANG Jing-bo, et al. Adaptive fractional-order sliding-mode control design of super conducting magnetic energy storage systems [J]. Power System Technology, 2020, 44(5): 1714­1722.
16 ABEYWARDANA D B W, HREDZAK B, AGELIDIS V G. A fixed­frequency sliding mode controller for a boost­inverter­based battery­supercapacitor hybrid energy storage system [J]. IEEE Transactions on Power Electronics, 2017, 32(1): 668­680.
17 KANCHANAHARUTHAI A, MUJJALINVIMUT E. An improved backstepping sliding mode control for power systems with superconducting magnetic energy storage system [J]. International Journal of Innovative Computing, Information and Control, 2019, 15(3): 891­904.
18 NI J, LIU L, LIU C, et al. Fast fixed time nonsingular terminal sliding mode control and its application to chaos suppression in power system [J]. IEEE Transactions on Circuits and Systems II: Express briefs, 2017, 64(2): 151­155.
19 GHAHREMANI E, KAMWA I. Online state estimation of a synchronous generator using unscented Kalman filter from phasor measurements units [J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1099­1108.
20 卢强, 梅生伟, 孙元章. 电力系统非线性控制[M]. 北京: 清华大学出版社, 2008: 237-244.
21 YAZDANI A, IRAVANI R. Voltage sourced converters in power systems [M]. USA: Wiley Online Library, 2010: 155-172.
22 UTKIN V, GULDNER J, SHI J. Sliding mode control in electro mechanical systems [M]. USA: CRC Press, 2017: 378-388.
23 LIU J, WANG X. Advanced sliding mode control for mechanical systems [M]. Beijing: Springer, 2012: 137-152.
24 KUNDUR P, BALU N J, LAUBY M G. Power system stability and control [M]. USA: McGraw Hill New York, 1994: 689-721.
25 KAMWA I. Performance of three PSS for interarea oscillations [EB/OL]. [2021-02-01]. https://www.mathworks.com/help/physmod/sps/examples/performance-of-three-pss-for-interarea-oscillations.html.
26 LING Y, LI Y, XIANG J. Flexible generator: generation unit integrated by energy storage system and synchronous generator [J]. IEEE Transactions on Power Systems, 2020, 35(6): 4263­4271.
[1] 于瑞,徐雪峰,周华,杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(3): 436-443.
[2] 张国澎,李子汉,王浩,郑征. 隔离型交?直流固态变压器前后级一体化滑模控制[J]. 浙江大学学报(工学版), 2022, 56(3): 622-630.
[3] 周兵,刘阳毅,吴晓建,柴天,曾勇强,潘倩兮. 主动前轮转向和直接横摆力矩集成控制[J]. 浙江大学学报(工学版), 2022, 56(12): 2330-2339.
[4] 孟庆龙,任效效,王文强,李洋,熊成燕. 考虑主动储能的HVAC需求响应策略实验与模拟[J]. 浙江大学学报(工学版), 2021, 55(6): 1175-1184.
[5] 李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.
[6] 李剑,汤文成. 基于H∞理论的滚珠丝杠进给系统滑模控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1497-1504.
[7] 朱艺锋,吴党建,白冰洋,岳豪. 单相五电平脉冲整流器滑模比例积分谐振控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1578-1586.
[8] 陈朝萌,周晓军,杨辰龙,吕浩亮,魏杰超. 高速电驱动履带车辆紧急制动控制策略[J]. 浙江大学学报(工学版), 2020, 54(3): 442-449.
[9] 吴爱国,吴绍华,董娜. 机械臂非奇异快速终端滑模模糊控制[J]. 浙江大学学报(工学版), 2019, 53(5): 862-871.
[10] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[11] 李新, 肖龙, 刘国梁, 邵雨亭, 陈国柱. 基于相位补偿和交叉前馈补偿的VSG功率振荡抑制策略[J]. 浙江大学学报(工学版), 2018, 52(3): 569-576.
[12] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[13] 郭凡, 魏建华, 张强, 熊义. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报(工学版), 2017, 51(10): 1937-1947.
[14] 潘宁, 于良耀, 张雷, 宋健, 张永辉. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报(工学版), 2017, 51(1): 9-16.
[15] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.