Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 934-942    DOI: 10.3785/j.issn.1008-973X.2018.05.013
机械与能源工程     
水下机器人-机械手系统非奇异终端滑模控制
王尧尧1,2, 顾临怡2, 陈柏1, 吴洪涛1
1. 南京航空航天大学 机电学院, 江苏 南京 210016;
2. 浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027
Nonsingular terminal sliding mode control of underwater vehicle-manipulator system
WAGN Yao-yao1,2, GU Lin-yi2, CHEN Bai1, WU Hong-tao1
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3841 KB)   HTML
摘要:

针对复杂集总干扰下水下机器人-机械手系统的轨迹跟踪控制难题, 提出基于时延估计的非奇异终端滑模控制方法. 该方法以时延估计为基础架构,利用非奇异终端滑模控制的强鲁棒性, 实现复杂集总干扰下系统高性能的轨迹跟踪控制. 受益于时延估计无需动力学模型的特性和非奇异终端滑模控制的强鲁棒性, 所提算法具有优异的控制性能、良好的鲁棒性和工程易用性. 以实验室搭建的一型水下机器人-机械手系统为研究对象, 展开9自由度数值仿真和7自由度水池试验研究, 结果表明:在未知复杂集总干扰下, 利用相同的控制增益, 所提控制方法相对传统时延估计控制可以保证更优的综合控制性能, 前者系统末端定位精度为0.038 m, 而后者仅为0.067 m.

Abstract:

A novel nonsingular terminal sliding mode control (NTSMC) method based on time delay estimation (TDE) was proposed in order to solve the trajectory tracking control problem of underwater vehicle-manipulator system (UVMS) under the unknown complex lumped disturbance. TDE was used as the baisc framework and the strong roubustness of NTSMC was combined to realize the high performance trajectory tracking control under complex lunmped disturbance. The method can ensure good control performance, strong robustness and easiness for practical applications benefiting from the attractive model-free feature of TDE and the strong robustness of NTSMC. Comparative 9 degree of freedoms (DOFs) numerical simulations and 7 DOFs pool experimental studies were conducted using a UVMS developed in our laboratory. Results show that the method can ensure better comprehensive control performance compared with the traditional TDE-based control method using the same control gains under the unknown complex lumped disturbance. The former system can ensure a precision of 0.038 m for the end effector of the UVMS while the latter one can obtain a precision of 0.067 m.

收稿日期: 2017-04-22 出版日期: 2018-11-07
CLC:  TP249  
基金资助:

国家自然科学基金资助项目(51705243,51575256);江苏省自然科学基金资助项目(BK20170789);浙江大学流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201606).

通讯作者: 陈柏,男,教授.orcid.org/0000-0003-1508-7906.     E-mail: chenbye@126.com
作者简介: 王尧尧(1989-),男,博士,讲师,从事控制技术等研究.orcid.org/0000-0001-5237-378X.E-mail:yywang_cmee@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.

WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 934-942.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.013        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/934

[1] OLGUÍN-DÍAZ E, ARECHAVALETA G, JARQUIN G, et al. A passivity-based model-free force-motion control of underwater vehicle-manipulator systems[J]. IEEE Transactions on Robotics, 2013, 29(6):1469-1484.
[2] 贾现军.小型水下救援机器人位姿控制及其在水下搜救中的应用[D].杭州:浙江大学,2014. JIA Xian-jun. Position and attitude control of small rescue ROV and its applications[D]. Hangzhou:Zhejiang University, 2014.
[3] LYNCH B, ELLERY A. Efficient control of an AUV-manipulator system:an application for the exploration of Europa[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3):552-570.
[4] LONDHE P S, SANTHAKUMAR M, PATRE B M, et al. Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1):13-28.
[5] HUANG Hai, TANG Qi-rong, LI Hong-wei, et al. Vehicle-manipulator system dynamic modeling and control for underwater autonomous manipulation[J]. Multibody System Dynamics, 2017, 41(2):125-147.
[6] SOTIROPOULOS P, ASPRAGATHOS N. Neural networks to determine task oriented dexterity indices for an underwater vehicle-manipulator system[J]. Applied Soft Computing, 2016, 49:352-364.
[7] MOHAN S, KIM J. Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks[J]. Ocean Engineering, 2012, 54(1):233-243.
[8] MARANI G, CHOI S K, YUH J. Underwater autonomous manipulation for intervention missions AUVs[J]. Ocean Engineering, 2009, 36(1):15-23.
[9] HAN J, PARK J, CHUNG W K. Robust coordinated motion control of an underwater vehicle-manipulator system with minimizing restoring moments[J]. Ocean Engineering, 2011, 38(10):1197-1206.
[10] XU Bin, PANDIAN S R, SAKAGAMI N, et al. Neuro-fuzzy control of underwater vehicle-manipulator systems[J]. Journal of the Franklin Institute, 2012, 349(3):1125-1138.
[11] 张奇峰.自治水下机器人-机械手系统运动规划与协调控制研究[D].沈阳:中国科学院沈阳自动化研究所,2007. ZHANG Qi-feng. Research on coordinated motion planning and control of autonomous underwater vehicle-manipulator system[D]. Shenyang:Shengyang Institute of Automation, Chinese Academy of Sciences, 2007.
[12] 郭莹.水下自主作业系统协调控制技术研究[D].武汉:华中科技大学,2008. GUO Ying. Coordinated control technology of underwater vehicle-manipulator system[D]. Wuhang:Huazhong University of Science and Technology, 2008.
[13] 彭生全.水下机器人-机械手系统运动规划与控制技术研究[D].哈尔滨:哈尔滨工程大学,2012. PENG Sheng-quan. Research on the motion planning and control for underwater vehicle-manipulator system[D]. Harbin:Harbin Engineering University.
[14] ANTONELLI G. Underwater robots[M]. Cassino:Springer, 2014.
[15] YU Shuang-he, YU Xing-huo, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11):1957-1964.
[16] CHANG P H, PARK S H. On improving time-delay control undercertain hard nonlinearities[J]. Mechatronics, 2003, 13(4):393-412.
[17] 王尧尧,顾临怡,高明,等.水下运载器非奇异快速终端滑模控制[J].浙江大学学报:工学版,2014, 48(9):1541-1551. WANG Yao-yao, GU Lin-yi, GAO Ming, et al. Nonsingular fast terminal sliding mode control for underwater vehicles[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(9):1541-1551.

No related articles found!