机械工程、能源工程 |
|
|
|
|
基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制 |
于瑞1( ),徐雪峰1,2,周华1,*( ),杨华勇1 |
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 2. 天津航海仪器研究所九江分部,江西 九江,332007 |
|
Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels |
Rui YU1( ),Xue-feng XU1,2,Hua ZHOU1,*( ),Hua-yong YANG1 |
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 2. Jiujiang Branch of Tianjin Navigation Instrument Research Institute, Jiujiang 332007, China |
引用本文:
于瑞,徐雪峰,周华,杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(3): 436-443.
Rui YU,Xue-feng XU,Hua ZHOU,Hua-yong YANG. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 436-443.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.002
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I3/436
|
1 |
GUO G, GAO Z, DONG K Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles[J]. Nonlinear Dynamics, 2021, 104 (4): 3701- 3712
doi: 10.1007/s11071-021-06462-8
|
2 |
SHAO G M, MA Y, MALEKIAN R, et al A novel cooperative platform design for coupled USV-UAV systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (9): 4913- 4922
doi: 10.1109/TII.2019.2912024
|
3 |
陈英龙, 赵勇刚, 周华, 等 大型中层拖网网具系统的仿真研究[J]. 浙江大学学报:工学版, 2014, 48 (4): 625- 632 CHEN Ying-long, ZHAO Yong-gang, ZHOU Hua, et al Simulation study of large mid-water trawl system[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 625- 632
|
4 |
GONZALEZ-GARCIA A, CASTA?EDA H Guidance and control based on adaptive sliding mode strategy for a USV subject to uncertainties[J]. IEEE Journal of Oceanic Engineering, 2021, 46 (4): 1144- 1154
doi: 10.1109/JOE.2021.3059210
|
5 |
HOSSEIN M, HAMID J, HAMID A, et al Developing a navigation, guidance and obstacle avoidance algorithm for an unmanned surface vehicle (USV) by algorithms fusion[J]. Ocean Engineering, 2018, 159: 56- 65
doi: 10.1016/j.oceaneng.2018.04.018
|
6 |
ZHAO Y, QI X, MA Y, et al Path following optimization for an underactuated USV using smoothly-convergent deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (10): 6208- 6220
|
7 |
史剑光, 李德骏, 杨灿军, 等 水下自主机器人接驳碰撞过程分析[J]. 浙江大学学报:工学版, 2015, 49 (3): 497- 504 SHI Jian-guang, LI De-jun, YANG Can-jun, et al Impact analysis during docking process of autonomous underwater vehicle[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (3): 497- 504
|
8 |
GUO G, ZHANG P Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time disturbance observer[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (1): 302- 316
doi: 10.1109/TVT.2019.2955020
|
9 |
ZHANG P, GUO G Fixed-time switching control of underactuated surface vessels with dead-zones: global exponential stabilization[J]. Journal of the Franklin Institute, 2020, 357 (16): 11217- 11241
doi: 10.1016/j.jfranklin.2019.05.030
|
10 |
LIU W W, LIU Y C, BUCKNALL R A robust localization method for unmanned surface vehicle (USV) navigation using fuzzy adaptive Kalman filtering[J]. IEEE Access, 2019, 7: 46071- 46083
doi: 10.1109/ACCESS.2019.2909151
|
11 |
DO K D Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances[J]. Ocean Engineering, 2016, 111: 267- 278
doi: 10.1016/j.oceaneng.2015.10.038
|
12 |
张成举, 王聪, 曹伟, 等 欠驱动USV神经网络自适应轨迹跟踪控制[J]. 哈尔滨工业大学学报, 2020, 52 (12): 1- 7 ZHANG Cheng-ju, WANG Cong, CAO Wei, et al Adaptive neural network trajectory tracking control for underactuated unmanned surface vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52 (12): 1- 7
doi: 10.11918/201905049
|
13 |
PAN C Z, LAI X Z, YANG S X, et al A bioinspired neural dynamics-based approach to tracking control of autonomous surface vehicles subject to unknown ocean currents[J]. Neural Computing and Applications, 2015, 26: 1929- 1938
doi: 10.1007/s00521-015-1839-6
|
14 |
LIU L, WANG D, PENG Z H Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances[J]. Neurcomputing, 2016, 173: 799
doi: 10.1016/j.neucom.2015.08.033
|
15 |
DONG Z P, WAN L, LI Y M, et al Trajectory tracking control of underactuated USV based on modified backstepping approach[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7 (5): 817- 832
doi: 10.1515/ijnaoe-2015-0058
|
16 |
ZHOU W, WANG Y, AHN C K, et al Adaptive fuzzy backstepping-based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14749- 14764
doi: 10.1109/TVT.2020.3039220
|
17 |
ASHRAFIUON H, MUSKE K R, MCNINCH L C, et al Sliding-mode tracking control of surface vessels[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (11): 4004- 4012
doi: 10.1109/TIE.2008.2005933
|
18 |
XU J, WANG M, QIAO L Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J]. Ocean Engineering, 2015, 105: 54- 63
doi: 10.1016/j.oceaneng.2015.06.022
|
19 |
SUN Z, ZHANG G, QIAO L, et al Robust adaptive trajectory tracking control of underactuated unmanned surface vessel in fields of marine practice[J]. Journal of Marine Science and Technology, 2018, 23: 950- 957
doi: 10.1007/s00773-017-0524-0
|
20 |
SUN Z, ZHANG G, YANG J, et al Research on the sliding mode control for underactuated unmanned surface vessels via parameter estimation[J]. Nonlinear Dynamics, 2018, 91: 1163- 1175
doi: 10.1007/s11071-017-3937-8
|
21 |
KAO Y, XIE J, WANG C, et al A sliding mode approach to H∞ non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems [J]. Automatica, 2015, 52: 218- 226
doi: 10.1016/j.automatica.2014.10.095
|
22 |
LEI Q, BOWEN Y, DEFENG W, et al Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles[J]. Ocean Engineering, 2017, 134: 157- 172
doi: 10.1016/j.oceaneng.2017.02.006
|
23 |
LU Y S Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56 (9): 3743- 3750
doi: 10.1109/TIE.2009.2025719
|
24 |
QU Y, XIAO B, FU Z, et al Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties[J]. ISA Transactions, 2018, 78: 47- 55
doi: 10.1016/j.isatra.2017.12.020
|
25 |
BAI K Q, GONG X T, CHEN S H, et al Sliding mode nonlinear disturbance observer-based adaptive back-stepping control of a humanoid robotic dual manipulator[J]. Robotica, 2018, 36 (11): 1728- 1742
doi: 10.1017/S026357471800067X
|
26 |
ZHAO X H, ZHANG X Y, YE X F, et al Sliding mode controller design for supercavitating vehicles[J]. Ocean Engineering, 2019, 184: 173- 183
doi: 10.1016/j.oceaneng.2019.04.066
|
27 |
劳立明. 基于直驱电液技术的有杆抽油系统运动控制与节能控制研究[D]. 杭州: 浙江大学, 2017: 47-90. LAO Li-ming. Research on motion control and energy-saving control of sucker rod pumping systems using direct-driven electro-hydraulic technology [D]. Hangzhou: Zhejiang University, 2017: 47-90.
|
28 |
WANG N, SU S F Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2019, 99 (2): 794- 803
|
29 |
SINISTERRA A J, DHANAK M R, ELLENRIEDER K V Stereovision-based target tracking system for USV operations[J]. Ocean Engineering, 2017, 133: 197- 214
doi: 10.1016/j.oceaneng.2017.01.024
|
30 |
FOSSEN T I. Marine control systems: guidance, navigation and control of ships rigs and underwater vehicles [M]. Trondheim: Marine Cybernetics, 2002: 35-120.
|
31 |
KHALIL H K. Nonlinear systems [M]. Beijing: Publishing House of Electronics Industry, 2012: 123-125.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|